Show simple item record

dc.contributor.authorBoumrar, Hocine
dc.date.accessioned2017-06-21T09:38:06Z
dc.date.available2017-06-21T09:38:06Z
dc.date.issued2015-12-17
dc.identifier.citationPHYSIQUE DES MATERIAUXen
dc.identifier.urihttps://www.ummto.dz/dspace/handle/ummto/1362
dc.description135 f. : ill. ; 30 cm. ( + CD- Rom)en
dc.description.abstractLa théorie semi-classique de la dynamique des électrons de Bloch joue un rôle très important dans la compréhension des spectres électroniques et des propriétés de transport dans le solide. Il a été constaté que les équations du mouvement de plusieurs systèmes semi-classiques doivent tenir compte d’une vitesse anormale provenant de la contribution de la phase de Berry. Ceci a aidé à résoudre le mystère de l'effet Hall anormal dans les matériaux ferromagnétiques. Nous présentons une approche alternative pour la dérivation des équations du mouvement d'un électron dans les bandes magnétiques de Bloch, basée sur une diagonalisation semi-classique des hamiltonien quantiques. Nous montrons que les variables dynamiques ne sont pas les opérateurs canoniques habituels, mais de nouveaux opérateurs covariants qui incluent des potentiels de jauge de Berry. Le caractère commun de ce formalisme hamiltonien est qu’une géométrie non commutative engendre la structure algébrique des coordonnées et des impulsions. Une substitution généralisée de Peierls comprenant un terme de Berry doit être considérée pour la détermination des équations semi-classiques complètes du mouvement, ainsi que pour la condition de quantification de Bohr-Sommerfeld pour les niveaux d'énergie. De plus l’idée de Feynman sur l’électromagnétisme est étendue à l'espace des impulsions dans le cadre de la mécanique quantique non commutative. Nous montrons que la non commutativité des coordonnées est responsable d'un nouveau effet appelé effet Hall de spin. Nous montrons aussi sa relation avec la phase de Berry. En générale, nous mentionnons les efforts actuels menés dans le but de mieux comprendre la relation étroite existant entre la géométrie non-commutative et la phase de Berry.en
dc.language.isofren
dc.publisherUniversite Mouloud Mammerien
dc.subjectMécanique quantiqueen
dc.subjectDynamique : électronen
dc.titleEtude de la phase de Berry dans le cadre de la mécanique quantique non- commutativeen
dc.typeThesisen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record