Examen de Probabilités/Statistique (Durée 1 h 30)

Exercice 1

Le tableau suivant représente la répartition d'un échantillon d'étude constitué de 91 pièces suivant le nombre d'essais de traction (X) et le nombre d'essais de cisaillement (Y).

X/Y	1	2	3	4
2	4	12	8	2
4	2	6	4	1
6	6	18	12	3
8	2	6	4	1

- 1. Déterminer les distributions marginales de X et Y.
- 2. Les deux variables sont-elles indépendantes ? Justifier.
- 3. Déterminer la distribution conditionnelle de Y/X=6.
- 4. Déterminer le coefficient de corrélation $\rho(X,Y)$. Conclure.
- 5. Déterminer l'équation de la droite de régression de Y en X.

Exercice 2

On sait qu'à une date donnée, 3% d'une population est atteinte de la maladie COVID 19. On dispose de tests de dépistage de la maladie :

- Si la personne est malade, alors le test est positif avec une probabilité de 95%.
- Si la personne est saine, alors le test est positif avec une probabilité de 10%.
 - 1. Quelle est la probabilité pour qu'une personne soit malade si son test est positif ?
 - 2. Quelle est la probabilité pour qu'une personne soit saine si son test est positif ?
 - 3. Quelle est la probabilité pour qu'une personne soit malade si son test est négatif?
 - 4. Quelle est la probabilité pour qu'une personne soit saine si son test est négatif?

Exercice 3

La fréquence d'apparition chez l'homme d'un caractère génétique A est de 0,1 et celle d'un caractère B est de 0,3. La probabilité d'observer l'un ou l'autre de ces caractères chez un même individu est de 0,37.

- 1. Calculer la probabilité d'apparition des deux caractères chez un même individu.
- 2. Les deux caractères sont ils indépendants ?

Exercice 4

Soit f une fonction réelle définie par :

file definite part.
$$f(x) = \begin{cases} k(9 - x^2) & 0 \le x \le 3\\ 0 & sinon \end{cases}$$

- Trouver la valeur de k pour que la fonction f soit une densite de la variable aléatoire X. 1.
- Calculer l'espérance mathématique ainsi que la variance de $\it X$. 2.
- Déterminer la fonction de répartition. 3.

Ex01?	(10	pts)
The second secon	1	1 /

1- Distribution marginale de x ?				
×	ni	nixi	n;x;2	
21	26	521	104	
4	13	52	208	
G	39	234	1404	
8	13	104	8321	
iotal	91	442	2548	

Astr	ibution	mangina	la de Y: 0
Y	7	nj yj	ni yi
1	14	14	14
2	42	84	168
3	28	84	2521
4	7	28	112
250	QA	910	546

1)
$$f_{1} = f_{1} \cdot f_{2} \cdot f_{3} \cdot f_{4}$$
 $f_{1} = f_{2} \cdot f_{3} \cdot f_{4} = \frac{14}{91}$
 $f_{2} = f_{3} \cdot f_{3} = \frac{14}{91}$
 $f_{2} = f_{3} \cdot f_{3} = \frac{14}{91}$
 $f_{3} = f_{3} \cdot f_{4} = f_{5} \cdot f_{5} = f_{5} = f_{5} \cdot f_{5} = f_{5} = f_{5} \cdot f_{5} = f$

3) Distribution condit. de Y/x				/x=6:	
_ Y	1	2	3	4	5
PYIXE	<u>6</u> 39	18 39	35	3 39	1

4) Coefficient o	de conelatio	n p(x,y),
$f(x,y) = \frac{Co}{\sqrt{x}}$	V(X,Y)	,
		6
$\overline{X} = \frac{\sum n_i X_i}{N} =$	91 = 34 =	4,85
$V(x) - \sum n_i x_i^2$	-2 05110	. 2

$$V(x) = \frac{2n_1x_1^2}{N} - \frac{2548}{91} - (4.85)^2$$

$$= 4.08$$

$$\Rightarrow T_x = \sqrt{4.08} - 2.02 - \Lambda$$

$$\overline{Y} = \frac{2\eta}{N} \frac{y_0}{31} = \frac{210}{13} = 2,30.$$

$$V(y) = \frac{\sum_{i} y_{i}^{2}}{N} - \overline{y}^{2} = \frac{546}{91} - (2,3)^{2}$$

$$= 0.67$$

$$Cov(x,y) = \frac{1}{N} \sum \sum nij x_i y_j - \overline{x} \overline{y}$$

$$= \frac{1020}{91} - \frac{34}{7} \cdot \frac{30}{13}$$

$$= 0 \cdot 0$$

de liaison entre X et y-5) Divorte de régression de Yen X:

$$Y = aX + b$$

$$a = \frac{Cov(x,y)}{v(y)} = 0$$

$$a = \frac{Cov(x,y)}{-v(y)} = 0$$

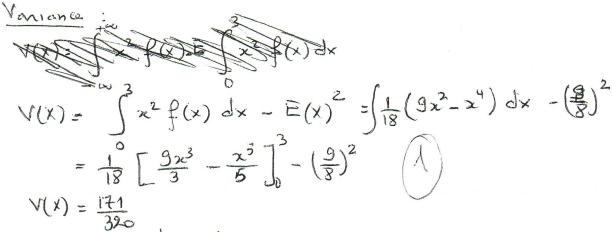
$$b = \frac{y - ax}{-30} = 2,30$$

$$\Rightarrow \sqrt{y = 2,30}$$

=x02; 4 pts For the Exercise ments: 1 = " La personne est atteinte de la maladie COVID" : "La personne est paine = " La personne testée positive " Le " " negative P(M) = 0,03 0,97 S 0,10 TT $P(M/T^{\dagger}) = \frac{P(T^{\dagger}M) \cdot P(M)}{P(M)}$ = P(T/M) , P(M) P(T/M). P(M) +P(T/S).P(S) = 0,95.0,03 P(M/+) = 0,227.) $P(5/T^{+}) = \frac{P(T^{+}/5) \cdot P(S)}{}$ $= \frac{0,10.0,97}{0,1255}$ = 0,773

0,95.0,03+0,10×0,97 P(S/T+)= 1-P(M/T+) 1) P(M/T)= P(T/M). P(M)
P(T) $=\frac{P(T/M)\cdot P(M)}{P(T/M)\cdot P(M)+P(T/S)\cdot P(S)}$ = 0,05 x 0,03 0,9 x0,97 + 0,05 x0,03 = 0,0017

4) P(5/T) = 1 - P(M/T) = 0,998. Ex03 [2p/s) Social les Evenements: A: "L'homme a 1 conactère gen. A" P(A)= 0,1 P(B) = 0,3 P(AUB)= 0,37 1) P(ANB)=? P(AUB) = P(A) + P(B) - P (ANB) => P(ANB) == P(AUB) + P(A) + P(B) =-0,37 + 0,1+0,3 (P(ANB) = 0,03) 2) P(ANB)= 0,03 P(A) P(B) = 0,1 × 0,3 = 0,03 / => P(ANB) = P(A) P(B) => Act B pont indépendants. Ex04: (04,5) $f(x) = \begin{cases} k(9-x^2) & 0 \leq x \leq 3 \\ 0 & -1 \end{cases}$ 1) $\int f(x) dx = 1 \Rightarrow$ $\Rightarrow \int_{0}^{\infty} f(x) dx + \int_{0}^{\infty} f(x) dx + \int_{0}^{\infty} f(x) dx = 1$ $\Rightarrow \int k(9-x^2) dx = 1$ $\Rightarrow k \left[9x - \frac{x^3}{3} \right] = 1$


>/k= 1/8

2) Esperance mathematique:

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{3} x f(x) dx = \int_{-\infty}^{3} \frac{1}{18} (9x - x^{3}) dx$$

$$= \frac{1}{18} \left[\frac{9x^{2}}{2} - \frac{x^{4}}{4} \right]_{0}$$

$$E(X) = \frac{9}{0}$$

3) Fonction de repentition:

8 5 5 x x 4 3:

$$F(x) = \int_{-\infty}^{\infty} f(r) dr + \int_{0}^{\infty} f(r) dr$$

$$= \int_{0}^{\infty} \frac{1}{18} \left(9 - \frac{1}{2} \right) dt = \frac{1}{18} \left[9t - \frac{1}{3} \right]_{0}^{\infty}$$

$$F(x) = \frac{1}{18} \left[9x - \frac{x^{3}}{3} \right]$$

$$\frac{\sin x \ge 3}{F(x)} = \int_{-\infty}^{\infty} f(t) dt = \int_{0}^{3} f(t) dt = 1$$

$$\Rightarrow F(x) = \begin{cases} 0 & \text{si} & x < 0 \\ \frac{1}{18} [9x - \frac{x^{2}}{3}] & \text{si} & 6 < x < 3 \end{cases}$$

