

Module : TP Ondes et Vibration Licence : S3 Académique 2021/2022

TP N°1

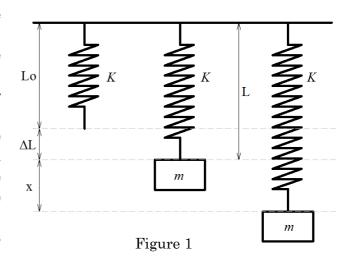
Pendule élastique – Oscillation du système masse-ressort

1- But du TP:

- Etude des oscillations libres à un degré de liberté du système masse-ressort.
- Mise en évidence de la loi de Hooke.
- Mise en évidence de l'effet de la masse du ressort.
- Détermination de la constante de raideur K d'un ressort et d'un système de ressort pour différent montages.

2- Etude théorique et questions :

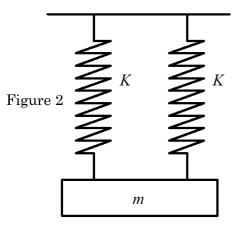
2-1/ Cas d'un seul ressort:

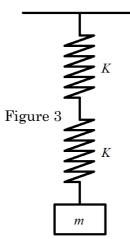

Sur la figure 1 ci-contre est représenté un système masse-ressort.

Lorsque le ressort de constante K, de masse négligeable, est vide sa longueur est L_{θ} .

Quand on lui accroche une masse m sa longueur devient L, et la masse reste en équilibre.

Si on écarte m d'une distance x, il produit une force de rappel F = K x linéairement proportionnelle à l'allongement. C'est la loi de Hooke. La constante de proportionnalité K est la constante de rigidité (raideur) du ressort.


La linéarité de la force de rappel provoque des oscillations harmoniques.


- Déterminer l'équation de mouvement du système en utilisant le Lagrangien.
- Déterminer la pulsation et la période du système masse-ressort.

2-2/ Association de deux ressorts :

Par la méthode statique, on peut déterminer l'expression de la constante de raideur équivalente K_{eq} , pour un ressort remplaçant deux ressorts K_1 et K_2 associés. Les deux montages possibles sont représentés sur les figures 2 et 3.

$$K_{eq} = K_1 + K_2$$

 $K_{eq} = (K_1 K_2) / (K_1 + K_2)$

Module : TP Ondes et Vibration Licence : S3 Académique 2021/2022

 \triangleright Retrouver les expressions des raideurs équivalentes K_{eq} pour chaque montage.

3- Manipulation expérimentale et questions :

3-1/ Etude d'un ressort seul :

Pour cette étude, nous fixons l'une des extrémités du ressort à un support puis on mesure la longueur L_0 du ressort vide. A l'autre extrémité du ressort on suspend une masse m et on mesure la longueur L de ce ressort afin de déduire l'allongement ΔL .

m (gramme)	$L_{ heta}$ (cm)	L (cm)	$\Delta L = L - L_{\theta} \text{ (cm)}$	K_{exp} (N/m)	$F = K_{exp} \Delta L \text{ (N/m)}$
50	18.80	20.50			
100	18.80	23.50			
150	18.80	25.50			
200	18.80	28.00			

- \triangleright Compléter le tableau en calculant l'allongement ΔL et la raideur du ressort $K_{exp\'erimental}$ en utilisant la condition d'équilibre statique.
- For Tracer la courbe $F = K_{exp} \Delta L$, en représentant au mieux les points obtenus correspondant à l'allongement du ressort en fonction du poids.
- Quelle est la nature de la courbe ? Commenter.
- \triangleright Déduire la moyenne des raideurs du ressort K_{moyen} .

3-2/ Etudes de deux ressorts en série :

Dans cette étude, on prend deux ressorts identiques ($K_1 = K_2 = K$) et on les associe en série puis on accroche l'une des extrémités à un support et dans l'autre on accroche une masse m qu'on fait varier puis on refait les mêmes mesures que dans le cas d'un ressort unique. Les résultats obtenus sont portés au tableau ci-dessous :

m (gramme)	$L_{ heta}$ (cm)	L (cm)	$\Delta L = L - L_{\theta} \text{ (cm)}$	K_{eq_exp} (N/m)	K_{eq_moyen} (N/m)
100	37.60	48.20			
150	37.60	53.20			
200	37.60	57.90			

- Compléter le tableau.
- > Trouver la raideur d'un seul ressort.

3-3/ Etudes de deux ressorts en parallèle :

En plaçant les deux ressorts précédents en parallèle, on reprend l'expérience et on note les résultats obtenus dans le tableau ci-dessous :

Module : TP Ondes et Vibration Licence : S3 Académique 2021/2022

m (gramme)	$L_{ heta}$ (cm)	L (cm)	$\Delta L = L - L_{\theta} \text{ (cm)}$	K_{eq_exp} (N/m)	K_{eq_moyen} (N/m)
100	18.80	21.40			
150	18.80	22.40			
200	18.80	24.00			

- > Compléter le tableau.
- > Trouver la raideur d'un seul ressort.