TD N°5 - Charges cycliques - Correction

Exercice 1:

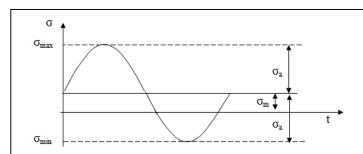
Calculer la contrainte admissible en flexion alternée pour une pièce, de section circulaire pleine de diamètre d= 40 mm, en acier allié de caractéristiques mécaniques $\sigma_R = 100 \text{ dan/mm}^2$, $\sigma_E = 80 \text{ dan/mm}^2$. On donne σ_m =80dan/mm², r =-0.6, [n] = 2, α_{σ} = 1.6, β_s = 1.4 et β_{ts} = 1.

1- Analyse de la sollicitation et du cycle de chargement

Sollicitation: Flexion alternée

Cycle: asymétrique de coefficient r =-0.6

Type de cycle : Contraintes alternées / Cycle asymétrique



$$\begin{cases} \sigma_{max} > 0 \\ \sigma_{mini} < 0 \\ \sigma_{m} > 0 \end{cases}$$

$$\sigma_{max} = \sigma_{m} + \sigma_{a}$$

Caractéristiques du cycle :

- Coefficient de cycle : $r = \frac{\sigma_{mini}}{\sigma_{maxi}}$ Amplitude de contrainte σ_a : $\sigma_a = \frac{\sigma_{maxi} \sigma_{mini}}{2}$ Contrainte moyenne σ_m : $\sigma_m = \frac{\sigma_{maxi} + \sigma_{mini}}{2}$

2- Détermination de la contrainte admissible de la pièce :

$$[\sigma]_r = \frac{\sigma_r}{[n]}$$
 , $[\tau]_r = \frac{\tau_r}{[n]}$

 σ_r : limite d'endurance en cycle asymétrique de coefficient 'r' du matériau de la pièce, elle s'écrit :

$$\sigma_r = \frac{2\sigma_D\sigma_R}{\sigma_R(1-r) + \sigma_D(1+r)} , \quad \tau_r = \frac{2\tau_D\tau_R}{\tau_R(1-r) + \tau_D(1+r)}$$

En tenant compte des différents paramètres influençant cette limite d'endurance, elle s'écrit σ_r^P :

$$\sigma_r^P = \frac{2\sigma_D\sigma_R}{\lambda_\sigma\,\sigma_R(1-r) + \sigma_D(1+r)} \ , \ \tau_r^P = \frac{2\tau_D\tau_R}{\lambda_\tau\tau_R(1-r) + \tau_D(1+r)}$$

[n] : coefficient de sécurité admissible =2

→ La Contrainte admissible de la pièce est: $[\sigma]_r^P = \frac{\sigma_r^P}{[n]}$, $[\tau]_r^P = \frac{\tau_r^P}{[n]}$

$$[\sigma]_r^P = \frac{\sigma_r^P}{[n]} = \frac{2\sigma_D \sigma_R}{\lambda_\sigma \, \sigma_R (1-r) + \sigma_D (1+r)} x \frac{1}{[n]}$$

• Calcul de la limite d'endurance du matériau en cycle symétrique σ_D

$$\text{Acier:} \begin{cases} \sigma_{Dflexion} = 0.45 \ \sigma_{R} \\ \sigma_{Dftraction} = 0.7 \sigma_{Dflexion} \\ \tau_{DTorsion} = 0.6 \ \sigma_{Dflexion} \end{cases}$$

- \checkmark $\sigma_{Dflexion} = 0.45 \, \sigma_{R} = 0.45 \, \text{x} \, 100 = 45 \, \text{dan/mm}^2 = 450 \, \text{MPa}$
 - Calcul du coefficient global tenant compte de l'influence des différents paramètres sur la limite d'endurance du matériau λ_σ donné par :

$$\lambda_{\sigma} = \frac{K_{\sigma}}{\varepsilon_{\sigma} \cdot \beta}$$

✓ K_{σ} : Coefficient effectif de concentration des contraintes :

$$K_{\sigma} = 1 + q(\alpha_{\sigma} - 1)$$

- q : coefficient de sensibilité du matériau aux concentrations de contraintes sous charges cycliques.
 - q = 0.6 à 0.8 pour les aciers non alliés.
 - q = 0.9 à 1 pour les aciers alliés.
 - q = 0 pour les fontes

On prend q=0.9

 $-\alpha_{\sigma}=1.6$: coefficient théorique de concentration de contraintes ou coefficient de forme

$$K_{\sigma} = 1 + 0.9(1.6 - 1) = 1.54$$

 \checkmark ϵ_{σ} : facteur d'échelle, ses valeurs sont données dans des tableaux (Tableaux 7 et 8) ou des abaques.

Sollicitation et matériau.	Diamètre 'd' en mm							
	15	20	30	40	50	70	100	200
ϵ_{σ} pour l'acier au carbone (flexion)	0.70	0.92	0.88	0.85	0.81	0.76	0.70	0.61
ϵ_{σ} pour l'acier allié (flexion) ϵ_{τ} pour tous les aciers (torsion).	0.85	0.83	0. 77	0.73	0.70	0.65	0.59	0.52

$$\epsilon_{\sigma} = 0.73$$

- $\checkmark \quad \beta = \beta_s . \beta_{ts}$: Facteur technologique
 - $-\beta_s$: coefficient tenant compte de la qualité de la surface
 - $-\beta_{ts}$: coefficient tenant compte des traitements superficiels.

$$\beta = \beta_s$$
. $\beta_{ts} = 1.4x1 = 1.4$

Le coefficient global vaut donc :

$$\lambda_{\sigma} = \frac{K_{\sigma}}{\varepsilon_{\sigma}, \beta} = \frac{1.54}{0.73 \times 1.4} = 1.51$$

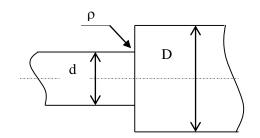
→ La Contrainte admissible de la pièce vaut donc :

$$[\sigma]_r^P = \frac{\sigma_r^P}{[n]} = \frac{2\sigma_D\sigma_R}{\lambda_\sigma \sigma_R(1-r) + \sigma_D(1+r)} x \frac{1}{[n]} = \frac{2x450x1000}{1.51x1000(1+0.6) + 450(1-0.6)} x \frac{1}{2} = 173.34MPa$$

$$[\sigma]_r^P = 173.34MPa$$

Exercice 2:

Vérifier l'arbre, de la figure ci-contre, en acier au carbone de caractéristiques mécaniques σ_R=70 dan/mm², τ_E=22dan/mm² et $\tau_D = 16 \text{ dan/mm}^2$. L'arbre est soumis à une torsion variable avec $M_{t max} = 48 \text{ Nm et } M_{t min} = -24 \text{ Nm}$



On donne:

$$D = 60 \text{ mm}, d = 30 \text{ mm}, [n] = 1.6, \beta = 1.1 \text{ et } \rho / d = 0.1.$$

La vérification de l'arbre à la résistance consiste en la vérification de l'une des deux conditions:

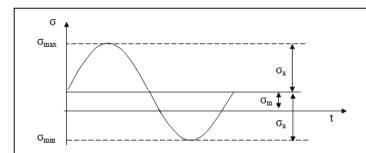
- Vérification de la condition de résistance : $\tau_{max} \leq [\tau]^P$
- Vérification de la condition sur le coefficient de sécurité : $n_{\tau} \geq [n]$

I- Résolution de l'exercice par rapport à la condition de résistance : $\tau_{max} \leq [\tau]^P$

1- Analyse de la sollicitation et du cycle de chargement

Sollicitation: Torsion alternée

Cycle : asymétrique de coefficient $r=\frac{\tau_{mini}}{\tau_{maxi}}=\frac{Mt_{min}}{Mt_{max}}=\frac{-24}{48}=-0.5$ Type de cycle : Contraintes alternées / Cycle asymétrique



$$\begin{cases} \sigma_{max} > 0 \\ \sigma_{mini} < 0 \\ \sigma_{m} > 0 \end{cases}$$

$$\sigma_{max} = \sigma_{m} + \sigma_{a}$$

Même chose pour les contraintes tangentielles τ

Caractéristiques du cycle :

- Coefficient de cycle : $r = \frac{\tau_{mini}}{\tau_{maxi}} = \frac{Mt_{min}}{Mt_{max}} = \frac{-24}{48} = -0.5$
- Amplitude de contrainte τ_{a} : $\tau_{a} = \frac{\tau_{maxi} \tau_{mini}}{2} = \frac{Mt_{maxi} Mt_{mini}}{0.4d^{3}} = \frac{48 (-24)}{0.430^{3}} x 1000 = 6.6 MPa$ Contrainte moyenne τ_{m} : $\tau_{m} = \frac{\tau_{maxi} + \tau_{mini}}{2} = \frac{Mt_{maxi} + Mt_{mini}}{0.4d^{3}} = \frac{48 + (-24)}{0.430^{3}} x 1000 = 2.2 MPa$

$$au_{maxi} = \frac{Mt_{max}}{0.2d^3}$$
 et $au_{mini} = \frac{Mt_{min}}{0.2d^3}$

2- Détermination de la contrainte admissible de la pièce :

$$[\tau]_r = \frac{\tau_r}{[n]}$$

 τ_r : limite d'endurance en cycle asymétrique de coefficient 'r' du matériau de la pièce, elle s'écrit :

$$\tau_r = \frac{2\tau_D \tau_R}{\tau_R (1-r) + \tau_D (1+r)}$$

En tenant compte des différents paramètres influençant cette limite d'endurance, elle s'écrit τ_r^P :

$$\tau_r^P = \frac{2\tau_D\tau_R}{\lambda_\tau\tau_R(1-r) + \tau_D(1+r)}$$

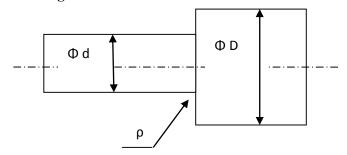
- [n]: coefficient de sécurité admissible =1.6
 - **→** La Contrainte admissible de la pièce est: $[\tau]_r^P = \frac{\tau_r^P}{[n]}$

$$[\tau]_r^P = \frac{\sigma_r^P}{[n]} = \frac{2\tau_D \tau_R}{\lambda_\tau \, \tau_R (1-r) + \tau_D (1+r)} x \frac{1}{[n]}$$

- \checkmark $τ_D = 160 MPa$, $τ_R = 0.5σR = 0.5x700 = 350 MPa$, r = -0.5, [n] = 1.6
 - Calcul du coefficient global tenant compte de l'influence des différents paramètres sur la limite d'endurance du matériau λ_{σ} donné par :

$$\lambda_{\tau} = \frac{K_{\tau}}{\varepsilon_{\tau} \cdot \beta}$$

 \checkmark $K_{τ}$: Coefficient effectif de concentration des contraintes donné dans des tableaux (Tableaux 1 à 6) **Arbre étagé**



$$\sigma_{nom.flex.} = \frac{M_f}{0.1d^3}$$
,
$$\tau_{nom.tors.} = \frac{M_t}{0.2d^3}$$

Tableau 1

Tubleau 1								
		\mathbf{K}_{σ} (Flexion)		K _τ (Torsion)				
D/d	ρ/ d	$\begin{array}{c} \sigma_R \ \leq \ 500 \\ N \ /mm^2 \end{array}$	$\begin{array}{c} \sigma_R \ \leq \ 1200 \\ N \ /mm^2 \end{array}$	$\begin{array}{c} \sigma_R \ \leq \ 500 \\ N \ /mm^2 \end{array}$	$\sigma_{R} \leq 1200$ N/mm^{2}			
1.2 < D/d ≤2	0.02	2.4	3.5	1.8	2.1			
	0.05	2.0	2.2	1.5	1.7			
	0.10	1.6	1.7	1.3	1.4			
	0.15	1.4	1.5	1.2	1.3			
	0.20	1.3	1.4	1.1	1.2			

$$K_{\tau}=1.4$$

 \checkmark ε_τ: facteur d'échelle, ses valeurs sont données dans des tableaux (Tableaux 7 et 8)

Sollicitation et matériau.	Diamètre 'd' en mm							
	15	20	30	40	50	70	100	200
$ε_{\sigma}$ pour l'acier allié (flexion) $ε_{\tau}$ pour tous les aciers (torsion).	0.85	0.83	0. 77	0.73	0.70	0.65	0.59	0.52

$$\epsilon \tau = 0.77$$

 $\checkmark \beta = \beta_s . \beta_{ts} = 1.1$: Facteur technologique

$$\beta = 1.1$$

Le coefficient global vaut donc :

$$\lambda_{\tau} = \frac{K\tau}{\epsilon \tau. \beta} = \frac{1.4}{0.77 \times 1.1} = 1.65$$

→ La Contrainte admissible de la pièce vaut donc :

 $\tau_{R} = 0.5\sigma_{R} = 70x0.5 = 35 dan \ / \ mm^{2} = 350 MPa \ et \ \tau_{D} = 16 \ dan / mm^{2} = 160 MPa, \ \lambda_{\tau} = 1.65, \ r = -0.5 me = 1.65 me =$

$$[\tau]_r^P = \frac{\tau_r^P}{[n]} = \frac{2\tau_D \tau_R}{\lambda_\tau \, \tau_R (1-r) + \tau_D (1+r)} x \frac{1}{[n]} = \frac{2x160x350}{1.65x350(1-(-0.5)) + 160(1+(-0.5))} x \frac{1}{1.6} - \frac{73.98MPa}{1.65x350(1-(-0.5)) + 160(1+(-0.5))} x \frac{1}{1.65x350(1-(-0.5))} = \frac{2x160x350}{1.65x350(1-(-0.5))} x \frac{1}{1.65x350(1-(-0.5))} = \frac{2x160x350}{1.65x350(1-(-0.5))} = \frac{2x160x350}{1.65x350(1-(-0.5))} = \frac{2x160x350}{1.65x350(1-(-0.5))} = \frac{1}{1.65x350(1-(-0.5))} = \frac{2x160x350}{1.65x350(1-(-0.5))} = \frac{1}{1.65x350(1-(-0.5))} = \frac$$

$$[\tau]_r^P = 73.98MPa$$

3- Calcul de la contrainte tangentielle de torsion maxi :

$$\tau_{maxi} = \frac{Mt_{maxi}}{0.2d^3} = \frac{48000}{0.2x30^3} = 8.9 \text{ MPa}$$

4- Vérification de la condition de résistance : $\tau_{max} \leq [\tau]^P$

0.09MPa < 73.98MPa. La condition de résistance est vérifiée, l'arbre travaillera en toute sécurité.

II- Résolution de l'exercice par rapport à la condition sur le coefficient de sécurité : $n_{\tau} \geq [n]$

 $-n_{\tau}$: Coefficient de sécurité sous chargement cyclique simple de contrainte tangentielle. Il est donné par la relation :

$$n_{\tau} = \frac{\tau_D \tau_R}{\lambda_{\tau} \tau_R \tau_a + \tau_D \tau_m}$$

- [n]: coefficient de sécurité admissible = 1.6

$$au_a = 6.6 MPa, au_m = 2.2 MPa, \ \lambda_{\tau} = 1.65, au_D = 160 MPa, au_R = 350 MPa$$

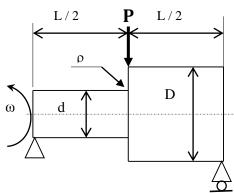
$$n_{\tau} = \frac{160 x350}{1.65 x350 x6.6 + 160 x2.2} = 13.45$$

 $n_{\tau} = 13.45$

Le coefficient de sécurité est largement supérieur au coefficient de sécurité admissible. L'arbre travaillera en toute sécurité.

Exercice 3:

Calculer la force P $_{maxi}$ que peut supporter l'arbre de la figure ci-contre. Cet arbre étagé est en acier de caractéristiques mécaniques $\sigma_R=1200~MN/m^2$ et $\sigma_D=360MN/m^2$. On donne : D=70~mm, d=50~mm, L=600~mm, [n]=1.8, $\rho/d=0.15$ et la surface de l'arbre est rectifiée.



La résolution de l'exercice peut être conduite de deux manières :

- Soit en posant la condition de résistance par rapport aux contraintes: $\sigma_{max} \leq [\sigma]^P$
- Soit en posant la condition de résistance par rapport au coefficient de sécurité : $n_{\sigma} \geq [n]$

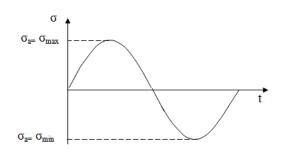
1-Sollicitation de l'arbre :

Ce problème est équivalent à celui d'une poutre sur deux appuis chargée au milieu par une force concentrée P. L'arbre est donc soumis à une flexion simple. Comme l'arbre est animé d'un mouvement de rotation de vitesse ω , il est donc soumis à une flexion simple rotative.

La flexion rotative est caractérisée par des contraintes alternées (traction/compression) suivant un cycle symétrique.

2- Caractérisation du cycle de chargement :

Contraintes alternées - Cycle symétrique :



$$|\sigma_{max}| = |\sigma_{mini}| = rac{M_{fmax}}{0.1d^3}$$
 $r = rac{\sigma_{min}}{\sigma_{max}} = -1$, $M_{fmax} = rac{PL}{4}$
 $\sigma_m = 0$, $\sigma_a = \sigma_{max} = rac{PL}{0.4d^3}$

3- Résolution en posant la condition de résistance par rapport aux contraintes: $\sigma_{max} \leq [\sigma]^P$ a- Détermination de la contrainte admissible de la pièce :

$$[\sigma]_r = \frac{\sigma_r}{[n]}$$

 σ_r : limite d'endurance en cycle asymétrique de coefficient 'r' du matériau de la pièce, elle s'écrit :

$$\sigma_r = \frac{2\sigma_D \sigma_R}{\sigma_R (1-r) + \sigma_D (1+r)}$$

En tenant compte des différents paramètres influençant cette limite d'endurance, elle s'écrit σ_r^P :

$$\sigma_r^P = \frac{2\sigma_D \sigma_R}{\lambda_\sigma \sigma_R (1-r) + \sigma_D (1+r)}$$

[n] : coefficient de sécurité admissible =1.8

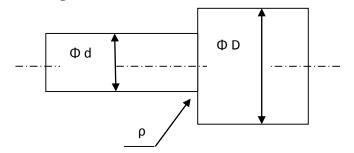
→ La Contrainte admissible de la pièce est: $[\sigma]_r^P = \frac{\sigma_r^P}{[n]}$

$$[\sigma]_r^P = \frac{\sigma_r^P}{[n]} = \frac{2\sigma_D \sigma_R}{\lambda_\sigma \sigma_R (1-r) + \sigma_D (1+r)} x \frac{1}{[n]}$$

- Limite d'endurance du matériau en cycle symétrique $\sigma_D=360MN/m^2$,
- r=-1, $\sigma_R = 1200 \text{ MN/m}^2$, [n]=1.8
- Calcul du coefficient global tenant compte de l'influence des différents paramètres sur la limite d'endurance du matériau λ_{σ} donné par :

$$\lambda_{\sigma} = \frac{K_{\sigma}}{\varepsilon_{\sigma} \cdot \beta}$$

\checkmark $K_{τ}$: Coefficient effectif de concentration des contraintes donné dans des tableaux (Tableaux 1 à 6) **Arbre étagé**



$$\sigma_{nom.flex.} = \frac{M_f}{0.1d^3},$$

$$\tau_{nom.tors.} = \frac{M_t}{0.2d^3}$$

Tableau 1

		K_{σ} (Fl	exion)	K_{τ} (Torsion)			
D/d	ρ/ d	$\begin{array}{cc} \sigma_R \ \leq \ 500 \\ N \ /mm^2 \end{array}$	$\sigma_{R} \leq 1200$ N / mm^{2}	$\begin{array}{c} \sigma_R \ \leq \ 500 \\ N \ /mm^2 \end{array}$	$\begin{array}{c} \sigma_R \ \leq \ 1200 \\ N \ /mm^2 \end{array}$		
1.2 < D/d ≤2	0.02	2.4	3.5	1.8	2.1		
D/d=1.4	0.05	2.0	2.2	1.5	1.7		
	0.10	1.6	1.7	1.3	1.4		
	0.15	1.4	1.5	1.2	1.3		
	0.20	1.3	1.4	1.1	1.2		

$$K_{\tau} = 1.5$$

 \checkmark ϵ_{σ} : facteur d'échelle, ses valeurs sont données dans des tableaux (Tableaux 7 et 8) ou des abaques.

Sollicitation et matériau.	Diamètre 'd' en mm							
	15	20	30	40	50	70	100	200
ϵ_{σ} pour l'acier au carbone (flexion)	0.93	0.92	0.88	0.85	0.81	0.76	0.70	0.61
ϵ_{σ} pour l'acier allié (flexion) ϵ_{τ} pour tous les aciers (torsion).	0.85	0.83	0. 77	0.73	0.70	0.65	0.59	0.52

$$\epsilon_{\sigma} = 0.70$$

 $\checkmark \quad \beta = \beta_s. \beta_{ts}$: Facteur technologique

 $-\beta_s$: coefficient tenant compte de la qualité de la surface

 $-\beta_{ts}$: coefficient tenant compte des traitements superficiels.

ho $ho_{ts}=1$: aucune condition sur les traitements superficiels de la surface de l'arbre

 $\beta_t = 0.8$: surface de l'arbre rectifiée

Coefficient de qualité de surface \(\beta_s : Tableau 9 \)

Procédé d'usinage	$\sigma_{R} [N/mm^{2}]$					
	400 800 1200					
Polissage	1.00	1.00	1.00			
Rectification	0.95	0.90	0.80			
Tournage grossier	0.85	0.80	0.65			

$$\beta = \beta_s \cdot \beta_{ts} = 0.8x1 = 0.8$$

Le coefficient global vaut donc :

$$\lambda_{\sigma} = \frac{K_{\sigma}}{\varepsilon_{\sigma}.\beta} = \frac{1.5}{0.7x0.8} = 2.68$$

$$\lambda_{\sigma} = 2.68$$

→ La Contrainte admissible de la pièce vaut donc :

$$[\sigma]_r^P = \frac{\sigma_r^P}{[n]} = \frac{2\sigma_D\sigma_R}{\lambda_\sigma\sigma_R(1-r) + \sigma_D(1+r)} x \frac{1}{[n]} = \frac{2x360x1200}{2.68x1200(1-(-1)) + 360(1+(-1))} x \frac{1}{1.8}$$

$$[\sigma]_r^P = 74.6 MPa$$

b- Contrainte maxi et condition de résistance :

• Contrainte maxi : $\sigma_{max} = \frac{PL}{0.4d^3}$

• Condition de résistance : $\sigma_{max} \leq [\sigma]^P$

$$\frac{PL}{0.4d^3} \le 74.6 \to Pmax \le \frac{74.6x0.4d^3}{L} = \frac{74.6x0.4x50^3}{600} = 6216N$$

$Pmax \leq 6216N$

4-Résolution en posant la condition de résistance par rapport au coefficient de sécurité: $n_{\sigma} \geq [n]$

- [n]: coefficient de sécurité admissible = 1.8

 $-n_{\sigma}$: Coefficient de sécurité sous chargement cyclique simple de contrainte normale. Il est donné par la relation:

$$n_{\sigma} = \frac{\sigma_{D}\sigma_{R}}{\lambda_{\sigma}\sigma_{R}\sigma_{a} + \sigma_{D}\sigma_{m}}$$

$$\sigma_{a} = \frac{PL}{0.4d^{3}}, \sigma_{m} = 0, \ \lambda_{\sigma} = 2.68, \sigma_{D} = 360MPa, \sigma_{R} = 1200MPa$$

$$n_{\sigma} = \frac{360x1200}{2.68x1200x\frac{PL}{0.4d^{3}} + 0} \ge 1.8$$

$$\frac{360x1200x0.4x50^{3}}{0.4x^{3}} \ge 1.8 \rightarrow Pmax \le \frac{360x1200x0.4x50^{3}}{0.4x^{3}} = 6218 Pmax$$

$$n_{\sigma} = \frac{360x1200x0.4x50^3}{2.68x1200x600Pmax} \ge 1.8 \rightarrow Pmax \le \frac{360x1200x0.4x50^3}{2.68x1200x600x1.8} = 6218 \, N$$

 $Pmax \leq 6218 N$