Titre : | Advanced Topics in Computer Vision | Type de document : | texte imprime | Auteurs : | Maria Farinella Giovanni ; Roberto Cipolla Sebastiano Battiato | Editeur : | London : Springer-Verlag | Année de publication : | 2013 | Collection : | Advances in Computer Vision and Pattern Recognition num. 2191-6586 | Importance : | 433 p. | Présentation : | ill. | Format : | 24 cm | ISBN/ISSN/EAN : | 978-1-4471-5519-5 | Langues : | Anglais | Mots-clés : | Computer Imaging Vision Pattern Recognition and Graphics | Index. décimale : | 6298 | Résumé : |
This book presents a broad selection of cutting-edge research, covering both theoretical and practical aspects of reconstruction, registration, and recognition. The text provides an overview of challenging areas and descriptions of novel algorithms. Features: investigates visual features, trajectory features, and stereo matching; reviews the main challenges of semi-supervised object recognition, and a novel method for human action categorization; presents a framework for the visual localization of MAVs, and for the use of moment constraints in convex shape optimization; examines solutions to the co-recognition problem, and distance-based classifiers for large-scale image classification; describes how the four-color theorem can be used for solving MRF problems; introduces a Bayesian generative model for understanding indoor environments, and a boosting approach for generalizing the k-NN rule; discusses the issue of scene-specific object detection, and an approach for making temporal super resolution video. | Note de contenu : |
Front Matter....Pages I-XIV
Visual Features—From Early Concepts to Modern Computer Vision....Pages 1-34
Where Next in Object Recognition and how much Supervision Do We Need?....Pages 35-64
Recognizing Human Actions by Using Effective Codebooks and Tracking....Pages 65-93
Evaluating and Extending Trajectory Features for Activity Recognition....Pages 95-111
Co-recognition of Images and Videos: Unsupervised Matching of Identical Object Patterns and Its Applications....Pages 113-141
Stereo Matching—State-of-the-Art and Research Challenges....Pages 143-179
Visual Localization for Micro Aerial Vehicles in Urban Outdoor Environments....Pages 181-214
Moment Constraints in Convex Optimization for Segmentation and Tracking....Pages 215-242
Large Scale Metric Learning for Distance-Based Image Classification on Open Ended Data Sets....Pages 243-276
Top–Down Bayesian Inference of Indoor Scenes....Pages 277-311
Efficient Loopy Belief Propagation Using the Four Color Theorem....Pages 313-339
Boosting k -Nearest Neighbors Classification....Pages 341-375
Learning Object Detectors in Stationary Environments....Pages 377-409
Video Temporal Super-resolution Based on Self-similarity....Pages 411-430
Back Matter....Pages 431-433 | En ligne : | https://www.amazon.fr/Advanced-Topics-Computer-Giovanni-Farinella-ebook/dp/B00FE [...] | Permalink : | ./index.php?lvl=notice_display&id=12115 |
Advanced Topics in Computer Vision [texte imprime] / Maria Farinella Giovanni ; Roberto Cipolla Sebastiano Battiato . - London : Springer-Verlag, 2013 . - 433 p. : ill. ; 24 cm. - ( Advances in Computer Vision and Pattern Recognition; 2191-6586) . ISBN : 978-1-4471-5519-5 Langues : Anglais Mots-clés : | Computer Imaging Vision Pattern Recognition and Graphics | Index. décimale : | 6298 | Résumé : |
This book presents a broad selection of cutting-edge research, covering both theoretical and practical aspects of reconstruction, registration, and recognition. The text provides an overview of challenging areas and descriptions of novel algorithms. Features: investigates visual features, trajectory features, and stereo matching; reviews the main challenges of semi-supervised object recognition, and a novel method for human action categorization; presents a framework for the visual localization of MAVs, and for the use of moment constraints in convex shape optimization; examines solutions to the co-recognition problem, and distance-based classifiers for large-scale image classification; describes how the four-color theorem can be used for solving MRF problems; introduces a Bayesian generative model for understanding indoor environments, and a boosting approach for generalizing the k-NN rule; discusses the issue of scene-specific object detection, and an approach for making temporal super resolution video. | Note de contenu : |
Front Matter....Pages I-XIV
Visual Features—From Early Concepts to Modern Computer Vision....Pages 1-34
Where Next in Object Recognition and how much Supervision Do We Need?....Pages 35-64
Recognizing Human Actions by Using Effective Codebooks and Tracking....Pages 65-93
Evaluating and Extending Trajectory Features for Activity Recognition....Pages 95-111
Co-recognition of Images and Videos: Unsupervised Matching of Identical Object Patterns and Its Applications....Pages 113-141
Stereo Matching—State-of-the-Art and Research Challenges....Pages 143-179
Visual Localization for Micro Aerial Vehicles in Urban Outdoor Environments....Pages 181-214
Moment Constraints in Convex Optimization for Segmentation and Tracking....Pages 215-242
Large Scale Metric Learning for Distance-Based Image Classification on Open Ended Data Sets....Pages 243-276
Top–Down Bayesian Inference of Indoor Scenes....Pages 277-311
Efficient Loopy Belief Propagation Using the Four Color Theorem....Pages 313-339
Boosting k -Nearest Neighbors Classification....Pages 341-375
Learning Object Detectors in Stationary Environments....Pages 377-409
Video Temporal Super-resolution Based on Self-similarity....Pages 411-430
Back Matter....Pages 431-433 | En ligne : | https://www.amazon.fr/Advanced-Topics-Computer-Giovanni-Farinella-ebook/dp/B00FE [...] | Permalink : | ./index.php?lvl=notice_display&id=12115 |
|  |