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Université Mouloud Mammeri Tizi-Ouzou
Faculté des Sciences

Travaux pratiques de vibrations et ondes
TP N°1 : Moments d’inertie et mouvements de torsion

1.Principe

Différents corps exécutent autour de leur axe de centre de gravité des mouvements
oscillants de torsion. On mesure la durée des oscillations ce qui permet la détermination du
moment d’inertie.

objectifs
- Déterminer la constante de torsion d’un ressort en spirale.

- Déterminer le moment d’inertie d’un disque, d’un cylindre creux, d’un cylindre plein,
d’une sphére et d’une barre.

- Déterminer le moment d’inertie de deux points matériels en fonction de la distance
verticale a I’axe de rotation. Le centre de gravité se trouve sur I’axe de rotation.

- Vérification du théoréme de Steiner (théoréme des axes paralle¢les) en déterminant le
moment d’inertie d’un disque en fonction de la distance verticale de ’axe de rotation
au centre de gravité.

1. Apercu théorique
Tout point matériel de masse m animé d’un mouvement circulaire de rayon r est soumis a
une accélération ¥ non nulle (car la vitesse n’est pas constante en module et en direction) et

par suite, 4 une force F =my non nulle et dont la direction est située dans le plan de la
trajectoire. La composante tangentielle de la force s’écrit :

L
d dt
rF, =mr’ do
dt

Les divers points, d’un solide en rotation autour d’un axe A, ont méme vitesse angulaire @

A tadoe: . dw . : : :
et méme accélération angulaire I En écrivant pour chaque point du solide en rotation la
t

relation précédente et en sommant sur tous les points, on obtient :
dw
z rF, = (z mr’) 7

La quantité positive J =Y mr’ est par définition le moment d’inertie du solide par
q p p p

rapport a ’axe A. Il caractérise la répartition de la masse du solide par rapport cet axe. Le
mouvement de rotation d'un solide est influencé par son moment d'inertie. Ce dernier
caractérise l'inertie du systéme a modifier sa vitesse angulaire. Exemple: le mouvement d'un
patineur lorsque celui-ci effectue une figure de toupie :
- si les bras du patineur sont écartés alors le moment d'inertie est important et le
patineur tourne moins vite ;
- si les bras sont le long du corps alors le moment d'inertie est faible et la vitesse de
rotation du patineur augmente.
Remarque : la masse joue un role analogue dans les mouvements de translation.
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ZrE est le moment résultant ou couple par rapport a I’axe des forces appliquées. On le

représente par M . La relation fondamentale de la dynamique s’écrit dans le cas de rotation :

w-sie
dt

Les moments d’inertie d’un corps par rapport aux axes de coordonnées cartésiennes
sont données par :

J. ='[m(y2 +zz)a’m='[v(y2 +zz),oa’v='|1[(y2 + z%) pdxdydz
J, ='[m(x2 +zz)dm='[v(x2 +zz)pa’v='|1[(x2 +z%) pdxdydz
J, ='[n(x2 +y)dm =J‘v()c2 +yz)pdv='|"['[(x2 +y?) pdxdydz

ou m, p et v sont respectivement la masse, la densité et le volume du corps. x, y et z sont les
coordonnées d’une particule élémentaire de volume dv et de masse dm.

Selon le théoréme de Steiner (théoréme des axes paralleles), le moment d’inertie Ju
d’un corps par rapport a un axe arbitraire A est égal a la somme du moment d’inertie J,- de ce
corps par rapport a un axe A’ parallele a A et passant par le centre d’inertie du corps et du
produit de la masse du corps par le carré de la distance a entre les axes A et A’ :

J,=J, +ma’

Expression de quelques moments d’inertie :

A
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N
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Un pendule de torsion est constitué par un corps oscillant homogene, suspendu en un
point O a un ressort spiral de constante de torsion C. Le moment d’inertie du corps par rapport
a I’axe de rotation est J. Si on fait tourner, dans le plan horizontal, le corps d’un angle 6, il
sera soumis a un couple de torsion: M, =-C@ et si on le lache, il sera équilibré par le

couple d’inertie M, = J6 = Jc;—cj :
D’ou d’aprés la loi fondamentale de la dynamique :

JO+CO=0

En introduisant la pulsation @, = ek I’équation du mouvement devient & + @ 0 =0. Sa

solution est : € =acos(w,t + ¢@)et sa période est T =27z\/% . Ainsi si on mesure la durée de

’oscillation, on peut déterminer le moment d’inertie du corps par la relation :
CT?

J=
47

2. Manipulation
2.1 Matériel utilisé

- Axe de rotation
- Différents corps : sphere, disque, cylindre creux, cylindre plein, barre avec masses
mobiles et disque avec trous diamétraux.
- Dynamometre 2,5 N
- Barriere lumineuse a fourchette.
- Compteur électronique digital a 4 décades.
- Divers supports et cables de connexion.
2.2 Mode opératoire de la barricre optique a fourche
La barriére optique a fourche permet de commander ¢lectroniquement des compteurs, des
horloges et d’autres appareils ¢électroniques. Dans notre cas, elle est raccordée a un compteur
numérique a 4 décades réglé a la fonction chronomeétre. La diode lumineuse s’allume lorsque
la diode photo-¢électrique est obscurcie. Le récepteur est placé dans un petit orifice pour le
protégé des lumicres parasites. En un endroit quelconque entre la source de lumicre et le
récepteur, il suffit d’un corps d’un diamétre efficace de moins de 1 mm pour obscurcir le
récepteur et a proximité immédiate de 1’orifice du récepteur un diamétre de 0,3 mm suffit. La
sensibilit¢ de réponse optimale est réglée automatiquement lors de I’enclenchement de
I’appareil et chaque fois que I’on actionne la touche « SET ».
Le mode opératoire de branchement de la barriere optique au compteur numérique a 4
décades réglé a la fonction chronometre se fait comme suit :
- Visser la tige de 25cm a la barric¢re a fourche de telle fagon que cette barricre montée
sur une embase, le faisceau lumineux est verticale.
- Alimenter la barriére a fourche en connectant respectivement les bornes « 5V » et
« L » de la barriere a fourche aux bornes rouge et bleu « 5V /1A » du compteur
numérique.
- Court-circuiter les douilles supérieures des bornes « Start/Stop » et « Stop» du
compteur numérique a 4 décades.
- Connecter 'une de ses douilles court-circuitées a la borne « Out » de la barricre a
fourche.
- Allumer le compteur et sélectionner le mode « TIMER » en utilisant le bouton
« FUNKTION » et le mode « [ | » en utilisant le bouton « TRIGGER ».
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Le compteur est apte a prendre des mesures en actionnant le bouton « START ».
Vérifier le bon fonctionnement de 1’ensemble en coupant deux fois le faisceau
lumineux.

La remise a zéro est obtenue en actionnant le bouton « RESET » du compteur.

2.3 Mesure de la constante de torsion du ressort en spirale

La mesure de la constante de torsion est réalisée selon le montage de la figure ci-dessous
et selon le mode opératoire suivant :

Monter I’axe de rotation sur un trépied.

Fixer la barre (sans les masses) en son milieu sur 1’axe de rotation.

Placer la barriere lumineuse a fourche de telle fagon que la barre immobile interrompe
le rayon lumineux. Le LED d’affichage de la barriére lumineuse s’allume.

Tourner la barre de & = 180°. En cette position, la barre interrompe a nouveau la
barriére lumineuse et la diode luminescente d’affichage s’allume a nouveau.

A Tl’aide d’un dynamometre placé perpendiculairement a la barre, mesurer la force F
nécessaire pour écarter la barre et mesure aussi le bras de levier (distance entre le
dynamometre et I’axe de rotation).

Refaire les deux dernicres opérations pour &= 2r et 3n. Attention : ne jamais subir au
ressort une rotation au-dela de & 720°.

Déduire le moment de torsion puis la constante de torsion.

4.4 Mesure du moment d’inertie de différents corps

Dans cette partie, on mesure la période des oscillations de différents corps afin de
déterminer le moment d’inertie en utilisant la relation entre le moment d’inertie J, la période
des oscillations 7 et la constante de torsion C du ressort en spirale. La manipulation est
réalisée selon le mode opératoire suivant :

Fixer le cylindre plein sur ’axe de rotation (figure ci-dessus).
Mettre en place un écran fixé par collage sur le cylindre (exemple du scotch non
transparent).
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Le cylindre étant en position de repos, placer la barriere lumineuse de telle fagon que
I’écran coupe le faisceau lumineux.

Tourner le cylindre de 180°.

Actionner le bouton « RESET » puis le bouton « START » du compteur numérique et
lacher le cylindre.

Relever la valeur indiquée par le compteur numérique. Cette valeur représente la durée
d’une demi-oscillation.

Refaire la mesure en tournant le cylindre de 180° dans le sens opposé. La période des
oscillations étant ainsi la somme des deux durées mesurées.

Déduire la valeur du moment d’inertie du cylindre plein.

Refaire la méme expérience en remplagant le cylindre par un cylindre creux, puis par
une sphere, puis par un disque et en enfin par la barre métallique sans les masses
(Remarque : un écartement de 90° au lieu de 180° est recommandé pour la barre
métallique).

Comparer les valeurs expérimentales du moment d’inertie des différents corps aux
valeurs calculées en utilisant les caractéristiques ci-dessous :

Corps Dimensions Masse
___________ Cylindreplein |  r=49cem ____ \ . m=367g |
___________ Cylindre creux | rm=406cmetry,=5cem |~ m=372g |
________________ Sphere | ._.rz7em | . m=z=76lg |
o Disque | r=108cm | m=284¢g |
Barre sans masses L =60cm m=133 g
Conclure

4.5 Mesure du moment d’inertie de deux masses identiques en fonction de leur
distance a I’axe de rotation

Fixer la barre métallique sur I’axe de rotation (Le centre de gravité de la barre doit étre

sur I’axe de rotation).

Glisser de chaque coté de la barre une des deux masses de 441g.

Placer ces masses de fagon équidistantes, a une distance de @ = 5 cm de 1’axe (distance

vis a vis).

Mesurer la période des oscillations et déduire le moment d’inertie J du systéme barre —

masses.

Refaire la manipulation pour a = 10, 15, 20 et 25 cm.

Dresser un tableau de mesures et tracer la courbe J = f{a?).

Déduire la masse des deux masses utilisées et conclure.

4.6 Vérification du théoréme de Steiner

Fixer le disque circulaire avec trous diamétraux sur ’axe de rotation. Ce disque est

placé de telle fagon que I’axe de rotation passe par le centre de gravité (a = 0).

Apres avoir écarter le disque de 180°, mesurer la période des oscillations et déduire le

moment d’inertie.

Refaire la méme expérience en déplacant I’axe de rotation de a = 3, 6, 9 et 12 cm par

rapport a I’axe passant par le centre de gravité du disque.

Dresser un tableau de mesures et tracer la courbe J = f(a?).

Le théoréme de Steiner est-il vérifi¢ ?
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Travaux pratiques de vibrations et ondes
TP N°2 : Oscillations libres et forcées. Pendule de Pohl

1. Principe

Dans le cas d’un systéme oscillant librement, la décroissance de 1’amplitude des oscillations est fortement
dépendante de degré de I’amortissement. En régime permanent de cas de systeme soumis a_une excitation

- Mesurer I"amplitude des oscillations d’un pendule de torsion
pour divers degrés d’amortissement.
- Déterminer la constante d’atténuation et le decreme
degrés d’amortissement. i
- Visualiser la résonance et étudier son « intensité » e

2. Apercu theorlque

d’un couple freinage proportionnel a la Vitesse -f
obéit a I’équation différentielle suivante :
+f0+CHO=0

2
est ’accélération

0 est I'angle de rotation, 0= la vitesse angulaire, 6 =

Z‘2

angulaire, fest la constante de’pre nnalité de ’amortisseur et / est le moment d’inertie du

pendule par rapport a I'axe de

f

ulsation propre de [loscillateur et o= 7 coefficient
n différentielle devient :
0+206+w0260=0
X ion différenticlle du second ordre a coefficients constants. Sa solution est
d e e et dépend du discriminant A' =’ — @, de I’équation caractéristique :
r’+2ar +@; =0
17cas: A'<0=a=<w,
L’amortissement est faible, I’équation caractéristique admet 2 racines complexes :

r=-atjo avec w=\a) —a’

La solution § =™ (Ale-/“" +A,e ) peut se mettre sous la forme : 6 =ae ™ cos(wr — )

C’est une sinusoide amortie : le régime est oscillatoire amorti.
2 cas: A'-0=>a > o,
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L’amortissement est fort. L’équation caractéristique a deux racines réelles r =-a+ f
avec fB=+a’ —o; . Lasolution est de la forme : @ =¢™* (Aleﬂ’ +A,e” )

Il n’y a plus d’oscillations, le régime est apériodique.

3 cas: A'=0=a =0,

Le coefficient « est égal a la pulsation propre de I'oscillateur, c’est le régime critique.
L’équation caractéristique admet une racine double » =-a. La solution devient alors :

O=e (a+bt).
En régime oscillatoire et lorsque I’amortissement est faible, 1’équation du mouvement
s’écrit : @ =ae ™ cos(a)t —go) . Les constantes a et ¢ sont déterminées a partir des“conditions

I’équation du mouvement devient :

0=0, Do gen cos(ar —p) avecigp=
w w

8o

en-*-l

arant deux amplitudes consécutives est constant. T est la pseudo

deux amplitudes consécutives est :

0 . s . .
2 j est le décrément logarithmique. L’oscillateur effectue un certain

n+l
nombre d’oscillations et finit par s’immobiliser a sa position d’équilibre.
2.2 Oscillateurs amortis en régime forcé

Le pendule est en plus soumis & I’action dun couple périodique M, =M  cos(w,pt),

I’équation différentielle régissant 1’oscillateur devient :
6+2a0+ 00 =F,cos(w,t)
. M, o . : o A
ou F, =7 et o, est la pulsation imposée. La solution générale de cette équation est la

somme de la solution sans second membre et d’une solution particuliére avec second membre.
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La premiere n’intervient que durant le régime transitoire, quant a la seconde, elle représente
I’évolution de I’oscillateur lorsque le régime permanent est établi.
En régime permanent, le systéme oscille a la pulsation imposée @, avec une amplitude 6,

et un déphasage  par rapport a ’excitation M, :
0(t)=6,cos(wt -y)

6,
6, = 0 ou 6 =—3
2P 2 W,
@, @, @,
2am,

0 a)a

3. Exploitation expérimentale &
3.1 Matériel utilisé
- Un pendule de torsion selon Pohl
- Une alimentation universelle

- Un pont de diode 30 VAC/1 ADC

- Un ampéeremetre.

- Un chronométre.

- Divers cables de connexion.

3.2 Montage et mode opératoire
Réaliser le montage conformément a la

Le moteur servant de source de vibrations forcées au pendule de torsion est alimenté a
partir de la source variable de 1’alimentation universelle puis redressée par un pont diode. Les
bornes de la source continue de 1’alimentation universelle sont directement reliées au systéme
de frein a courant de Foucault. On place un ampéremetre dans le circuit qui alimente le frein
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afin de mesurer I’'intensité du courant /r. Cette intensité indique le degré de d’amortissement.
Ir ne doit en aucun cas dépasser 1A. On représente sur la figure ci-dessous le schéma du
circuit électrique.

d |

Frein Moteur

Pendule de Pohl

3.3 Etude du régime libre amorti
- Le moteur d’excitation étant a I’arrét et le frem acol

Foucault non alimenté

(Ir=0A). ; B 4
- Ecarter le pendule jusqu’a ce qu’il vier , enbutée et lacher sans vitesse initiale.
- Mesurer la période T des oscﬂlatlo s. (on recommande de mesurer la durée 5 a

10T de 5 a 10 oscillations)
- Relever I’'amplitude 4 des oscﬂlatlon
- Dresser un tableau de mesure et tr

 toutes Tes 10 périodes.
la courbe 4 = f(1).

- Déduire la constante d’atte et le décrément logarithmique o.
- Refaire la méme mampu t1 en actionnant le frein a courant de Foucault : /7 =
0,25A; 0,40A ; 0,55 . On recommande d’augmenter la fréquence de

relevé de la vale
expérimentaux.
- Conclusion

mphtude afin d’avoir suffisamment de points

( ton « Fein » faire des réglages fins.

er alors la période 7, des oscillations (vitesse du moteur) et ainsi que

~ I’amplitude maximale 6,.

" Refaire la méme manipulation en régime amorti, c’est a dire a Ir = 0,25A, 0,40A,
0,55A et 0,90A.

- Dresser un tableau de mesure et comparer 7, et T (période des oscillations en

régime libre).
- Conclure.
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Travaux pratiques de vibrations et ondes
TP N°3 : Pendule réversible

1. Principe et objectifs

En mesurant les périodes d’oscillations d’un pendule réversible (ie : possédant deux axes
de rotation opposés), la valeur de I’accélération de la pesanteur g peut étre déterminée sans
connaitre ni la masse, ni le moment d’inertie du pendule.

2. Apercu théorique

La durée d’oscillation 7 d’un pendule physique ou pendule pesant (Fig.1), oscillant autour
de I’axe A avec une faible amplitude, est donnée par :

Ja
(1) L e
m.s.g P "= o

Ti=2rx

J4: Moment d’inertie rapporté a ’axe de rotation A B > {:

m : Masse du pendule s i 5
s : Distance du point A au centre de gravité S « i )
g : Accélération de la pesanteur oM/

On définit la longueur réduite du pendule par

[ = /s ; (1) devient T, :27z\/z (2) Fig.1
g

m.Js

et correspond ainsi formellement a la relation valable pour un pendule mathématique (ou
pendule simple) de longueur /.. Un pendule physique de longueur réduite /. a donc la
méme durée d’oscillation qu’un pendule mathématique de longueur /=/,

Le point M, situé dans le prolongement de AS a une distance /. de
I’axe de rotation A est appelé centre d’oscillation.

et ) S
Montrons que si I’on inverse le pendule de fagon a / u)\
faire passer 1’axe de rotation par M (Fig.2), la période des ;
oscillations reste inchangée et que A devient centre Ry oty /
d’oscillation (ie : A=A"). \3 i
La période du pendule physique par rapport a { \
J M Ko w1

I’axe de rotation M s’écrit : T',, =27
mS, .g

Jyr: Moment d’inertie rapporté a I’axe de rotation M
Sy : Distance du point M au centre de gravité S

et la nouvelle longueur réduite est :
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— JM — JM
T mS, m(l, -s)
En remplacant dans I’expression des longueurs réduites J4 et Jy en fonction de Js,
(théoréme de Steiner), on obtient :

Ji+ms®  Jg
Zr = = +5 ; (3)
m.s m.s

(Swi=li-s )

et
/- Js + m.(l- — 5)° s
’ m.(l- — s) m.(l- — s)

En remplacent dans (4) /, par son expression (3) :

' Js Js Js
[ = +(—+s—8)=s+——=1I
Js m.s m.s
m(—+s—s)
m.s
L’égalité des longueurs réduites entraine I’égalité des périodes d’oscillation autour des
axes A et M, périodes aussi égales a celle d’un pendule simple de longueur /..
Cette propriété est exploitée dans ce TP : En faisant varier la position d’un axe de rotation
et en mesurant les périodes d’oscillation du pendule relatives aux 2 axes, on déterminera le
centre d’oscillation et de ce fait la longueur réduite /, du pendule.

+ (=) 4)

3. Manipulation

3.1 Matériel utilisé

- 02 trépieds N
- 02 tiges carrées 1m \</ £
- 01 tige cylindrique 75cm /

- 02 tiges a couteaux N

- 05 Noix doubles

- 02 Axes coulissants.
- 01 compteur digital
- 01 barriére a fourche

- 01 metre
- 03 fils électriques -

s e s s

Fig.3
3.2 Montage expérimental
Le montage expérimental est illustré dans la Fig.3. S’assurer que les vis de serrage
des noix sont bloqués, et que I’ensemble trépieds + tiges ne bouge pas lorsque le pendule
oscille. Vérifier que les couteaux supportant le pendule sont horizontaux et que le plan
d’oscillation est parfaitement vertical.

Marquer au crayon un axe coulissant (1) et le fixer a 10 cm d’une extrémité de la

tige. Les périodes d’oscillations mesurées avec cet axe de rotation seront notées T;.
Cet axe sera gardé fixe tout au long du TP.

Placer le deuxiéme axe coulissant a ~ 8cm de I'autre extrémité de la tige. Les
périodes d’oscillation mesurées avec cet axe de rotation seront notées T,. La position de
cet axe sera variable et la distance entre les deux axes sera notée A.

Alimenter la barriére a fourche en connectant respectivement les bornes « 5V » et « L » de
la barriere a fourche aux bornes rouge et bleue « 5V /1A » du compteur numérique.
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Connecter la douille « Start/Stop » du compteur numérique a la borne « Out » de la barriere a

fourche.

Allumer le compteur et sélectionner le mode « TIMER » en utilisant le bouton

« FUNKTION » et le mode « [ | » en utilisant le bouton « TRIGGER ».

Vérifier le bon fonctionnement de ’ensemble en coupant deux fois le faisceau lumineux.
Placer la fourche verticalement entre les trépieds de facon que le pendule interrompe le

faisceau dans la position d’équilibre, tout en s’assurant que la barriére ne géne pas les

oscillations du pendule. (NB : On mesurera ainsi une demi période)

3.3 Mode opératoire

Détermination approximative de /, :

En premier lieu, mesurer la période initiale T; du pendule (Axe de rotation : axe (1),
axe coulissant (2) a 8 cm de I’extrémité).

Mesurer les périodes T,(A) du pendules avec comme axe de rotation I’axe (2). On fera
varier la distance A entre les axes de 34 a 60 cm par pas de 2 cm, en faisant coulisser a
chaque fois I’axe (2).

Remplir le Tableau 1, et tracer le graphe T,(A). Déterminer graphiquement les valeurs
Aa et As définies par T1=T2(L). A correspondant au cas symétrique (les axes sont équidistants
du centre de gravité) . A, correspond au cas asymétrique et définit donc la longueur réduite du
pendule (Nb :As>Aa )

Cependant, dans ce qui précede, on a négligé I'influence des masses des axes
coulissants qui modifient légerement le moment d’inertie du pendule Js. On peut s’en rendre
compte en mesurant Tj(A,).

Détermination précise de /, :

En gardant toujours I’axe (1) fixe, mesurer alternativement T;(A) et T>(A) en faisant
varier A de A, — 3cm a A, +3 cm. Remplir le tableau 2. Tracer les courbes correspondantes et
déduire graphiquement /,, définie par le point d’intersection des deux courbes.

Déduire de la relation (2) la valeur de ’accélération de la pesanteur g.

En estimant les incertitudes sur T et A,, évaluer I’incertitude sur g.

Conclure.

Remarque : Les périodes doivent étre mesurées pour de faible oscillations, sinon on
doit prendre en considération la variation de T en fonction de 0 :

2
T=2rx i(1+sinzg—kisin“g+£sin6€+...j
g 2 64 2 256 2

Le tableau suivant donne ’erreur que I’on commet (en fonction de 0) lorsque I’on
utilise la formule d’approximation (2) :

Amplitude 0 (°) : 0 2 5 10 20 30
Erreursur T (%): 0 0.0076  0.048 0.191 0.764 1.74
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TP N°4
Oscillations libres de pendules couplés

1. Principe

Mise en évidence des caractéristiques essentielles d’un systéme de deux pendules pesants
identiques couplés par un ressort. Visualisation des modes propres d’oscillations et du
phénoméne de battements.

2. Apercu théorique

Considérons deux pendules qui sont couplés par un ressort horizontal de constante de
rappel £ a une distance a de I'axe de rotation. Chaque pendule est constitué d'une masse m qui
peut osciller librement sous l'effet de son poids —m g autour d'un axe. La distance entre le

centre de masse du pendule et I'axe de rotation est dénoté par /. Pour déterminer les équations
du mouvement pour les deux pendules, on applique le théoréme du moment cinétique :

G —
S Z M
dt
ou L est le moment cinétique, et M le moment de s
force. -1 |
Le théoréeme du moment cinétique projeté sur

I"axe de rotation donne en utilisant I’approximation
sing = @ et cosq =1 :

I¢ = _mg[¢| ~ka2(¢] —¢z)

¢, =~mglg, + ka2(¢] ~¢,)
I '=ml* étant le moment d’inertie d’un pendule par
rapport a [’axe de rotation. Le moment de force di
au couplage a des signes opposés pour le pendule 1
et pour le pendule 2. Ces équations forment un
systeme d'équations dites couplées, puisque ¢, et ¢,

apparaissent dans chacun de ces deux équations. Pour découpler ces €quations on les ajoute et
on les soustrait pour obtenir ;

l
|
|
|
|
|
|
|
!
J
I

mg

1(9,+0,)+ mgl (@ +¢,) =0
1(¢,~8,)+(mgl +2ka* )¢, ~4,) =0
Par le changement de variable o =g, +4¢, et S =¢,—¢, , on arrive & deux équations qui ne
mélangent plus a et S,
Ia+mgla=0
[ +(mgl +2ka®)B =0
et dont les solutions sont données par :

Imgl
a(t)=A, cos(wf +9,) avec @, = _'3715.

z 2
B(t)=A4,cos(w,t +6,) avec  w, =1/ﬂg£—;£@—

Ay, Az, & et &, sont des constantes déterminées par les conditions initiales.

Travaux pratiques de mécanique et de vibrations ét ondes page 14



La solution de I'équation du mouvement pour le pendule ! et 2 est donc de la forme :
¢ = A, cos(wf +6,) + 4, cos(w,l +5,)
#, = A, cos(wt +6,)— A, cos(w,t +35,)
Sous certaines conditions initiales, on distingue plusieurs types d’oscillations :

Oscillations symétriques :

C’est le premier mode normal d’oscillation du systéme. Il correspond aux conditions
initiales : ¢,(0)=¢,(0) =g, et ¢ (0) =¢52(0):O Si elles sont introduites dans les équations
précédentes, elles donnent : 4, =¢, 1 4, =0; & =0 et & indéterminée. Et présentent comme
solutions aux mouvements des pendules

$(1)=¢,(t) =@ coswy T
Pour réaliser ce mode de vibration, il suffit que P . I
) SIS 5 G L ARTA Y/
les deux masses soient écartées d’un méme 21 \.\ ATECA ANA

angle ¢ et lachées simultanément sans vitesses
initiales. Les deux oscillateurs vibrent alors = o

sinusoidalement, en phase, avec la méme j \/
amplitude et a la méme pulsation o 0 2
correspondant & une période : tis}

[l

2, [T |

w, \ mgl \
[l s'agit d'oscillations a une seule fréquence. Le
couplage ne joue aucun rdle, puisque le ressort
reste toujours dans le méme état de tension. Il
est alors naturel qu'on retrouve la période du i
pendule simple. Si le systéme est excité
initialement se mode propre, il le reste par la
suite.

Oscillations antisymétriques :

(est le second mode normal d’oscillation du systéme. Il correspond aux conditions
mitiales © ¢ (0) =g, ; ¢,(0)=—¢, et (151(O)=¢'2(0)=O. Si elles sont introduites dans les
cquations précédentes, elles donnent: 4,=0; 4,=¢,; & indéterminée et 6,=0. Et
présentent comme solutions aux mouvements des pendules :

¢1 (t)= _¢2 ()= ¢0 Cos yt

)

b, [}
FR S B ST

Pour réaliser ce mode de vibration, il suffit que T .o
les deux masses soient écartées d’un méme angle 4 n A N/
¢ en sens opposées et lachées simultanément o LU A N AR T V]

sans vitesses initiales. Les deux oscillateurs

$, %]

vibrent alors sinusoidalement, en opposition de i | v, ‘,I \/ \/ "\j
phase, avec la méme amplitude et a la méme i : L s ; wlu
pulsation @, correspondant a une période : ) 18]

, 27 /

L o, 27[\; mgl +2ka’ tore 3 Tz
Il s'agit de nouveau d'une oscillation a une seule 2 f 4 iff \-\ ;/ \\ {f’\ /\
fréquence, mais le couplage entre les deux =0 / \\ ) / ‘\ -
pendules résulte en une diminution de la période. Rl L W 1T O \/ \
Si le systéme est excité initialement a se mode 4~ 4 . ¥ \H 5 ]
propre, il le reste par la suite. 0 2 4 6 8 10
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Phénomene de battement :
Pour des conditions initiales quelconques, le mouvement est une combinaison linéaire
des modes et pulsations propres. Ainsi, aux conditions initiales ¢,(0)=4¢, ; #,(0)=0 et

¢5](0) = ¢7 (0)=0 , correspond le mouvement dit des « pendules sympathiques ». Si elles sont
introduites dans les équations du mouvement des

%

pendules, elles donnent: A, =4,= et

8, =6, = 0. Bt présentent comme solutions :

. @, — O, ,+o

1) =@, cos| ———1 |cOs uz———‘t)
ir-to 2158 o[ 2

. ®, — (0, +o

(t) =@, sin| ———1 [sin| 22—
DR ECH PR
On observe que l'amplitude d'un des

: . . . o, + @
pendules, variant a la fréquence ‘2 4, est

Wy =@

modulée par la faible fréquence Le

; 2 . . .
déphasage de o entre le sinus et le cosinus traduit

les battements entre les deux pendules : lorsque un pendule a son amplitude maximale, l'autre
est arrété. L'énergie mécanique passe progressivement a chaque oscillation d'un pendule a
I'autre par l'intermédiaire du ressort de couplage, alors que, dans un mode normal, chaque
oscillateur conserve son énergie. La période d'oscillation 7 vaut :

- 27 _ ZT(U,T(U2
gﬁ.ﬁ)_z_ Tm, +T(u3
2

et la période de battement T (qui correspond au temps compris entre trois arréts consécutifs
du méme pendule)
27 a,T

W 0,

/7 == -_
2 e/ S

9]

&
Le couplage des oscillateurs est estimé par une grandeur ¥ appelé coefficient de couplage des
oscillateurs. T1 est compris entre 0 (oscillateurs indépendants) et 1 (oscillateurs rigidement
liés) : y !
T -T

o 0,

_ \

7,41, Liymnﬁmmk\
\
A\

|
|

X

Prise en compte de |’état pendule physique : i\

I'expression donnée pour ¢ et ¢ dans les équations i ‘
précédentes n'est valable que pour un pendule formé par une \ i\
masse ponctuelle (pendule mathématique). Dans le cas ou la \
masse a une certaine extension spatiale (pendule physique), il = = Fs ™
faut tenir compte de sa géométrie. Dans notre cas, le pendule [m s ff"‘ L- }H )
est formé par un cylindre creux attaché a une tige meétallique, N '
dont la masse n'est plus négligeable. Donc le centre de masse ne se trouve pas au centre du
cylindre creux ! En plus, il faut tenir compte de la contribution de la tige au moment d'inertie

?
H

1]
I.?_
*~
1
g
Y
:‘t;—_—-~' |
I
b1
Y
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total du pendule. Appliquer le théoréme de Steiner séparément au cylindre creux et 2 la tige
métallique. Sommer les deux moments d'inertie partiels pour obtenir le moment d'inertie total
du pendule. Pour un cylindre de masse m, de rayon r et de hauteur 4, le moment d'inertie par
rapport 4 un axe passant par le centre de masse et perpendiculaire a son axe de révolution est :

m
=—<@3r’+h’
12( )

Le moment d’inertie d’une barre de masse mj; de longueur /, par rapport & un axe
perpendiculaire et passant par son extrémité :

m, 1’
[/7 :_-‘é:gh_

Le moment d’inertie d’un pendule par rapport & I’axe de rotation devient alors :
2
I=1,+1, +mc[1 ~f12~)

Dans ce cas, les équations exprimant le mouvement des pendules doivent étre modifiées :

]é:_[mcg(l—g'j-'.mbg J¢| kaz(¢| ¢2)
]éfgz—(mcg(l—g)+mhg j¢,+ka (05,—(152)

Et I'expression des périodes propres T, et T, deviennent :

T(UI :—2—-7—-1-:272' h] l
v m{,g(l——)mhg—”
2 2
T =2—ﬂ:=2ﬂ 4

myg(l v%)ﬂnhg %+2ka2

Détermination de la constante de rappel k du ressort par la méthode statique :

La méthode consiste & maintenir le deuxiéme pendule dans la position ¢, pendant
qu'on mesure la déviation ¢; du pendule 1. Dans le cas statique l'accélération angulaire
q), = ¢~ =0 . Des équations du mouvement des pendules, on tire alors

—(mc.g[l 5%)+m,,g é)(p‘ ~ka’(4,—¢,)=0

D’ou

a’ ¢ — ¢

3. Exploitation expérimentale

3.1 Matériel utilisé

- 01 systéme de pendules couplés fixé sur un support stable. Ce systeme est composé de
deux pendules pesants montés sur un méme axe par I’intermédiaire de roulement 2 bille et
d’un ressort pouvant relier les deux pendules a plusieurs niveaux. Chaque pendule _est
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formé d’une tige (longueur /, = 60 cm ; masse mp = 137 g) et d’une masse cylindrique

(diametre extérieure D = 2r = 5 ¢m : hauteur 4 = 4.5 cm . masse m. = 249 g). On peut
varier la longueur des pendules en faisant varier la position / de la base de la masse sur la

tige,

- 01 barriere a fourche montée sur un trépied a [’aide d’une tige carré de 25 cm, d’une

tige cylindrique de 25 cm et d’une noix double.

r

- 02 unités de mesure d’écartement des pendules chacune composée d’une régle gradude

montee sur une embase & I’aide d’une tige carré de 25 cm et d’une noix double.
- 01 metre

- 01 compteur digital
03 fils électriques

3.2 Montage et mode opératoire

Réaliser le montage conformément a la figure ci-dessous :
La barriére optique a fourche permet de §
commander €lectroniquement des compteurs, des
horloges et d’autres appareils €lectroniques. Dans
notre cas, elle est raccordée 4 un compteur
numérique & 4 décades réglé a la fonction
chronometre. La diode lumineuse s’allume lorsque
la diode photoélectrique est obscurcie. Le récepteur
est placé dans un petit orifice pour le protégé des
lumieres parasites. En un endroit quelconque entre
la source de lumiére et le récepteur, il suffit d’un
corps d’un diametre efficace de moins de 1 mm
pour obscurcir le récepteur et & proximité
immediate de I’orifice du récepteur un diamétre de
0,3 mm suffit. La sensibilité de réponse optimale est
réglée automatiquement lors de I’enclenchement de
I"appareil et chaque fois que ’on actionne la touche §
« SET ». §
Le mode opératoire de branchement de la
barriere optique au compteur numeérique & 4 décades
réglé a la fonction chronomeétre se fait comme suit -

- Visser la tige de 25cm 4 la barriére a fourche de telle fagon que cette barriére montée
sur une embase, le faisceau lumineux est verticale.

- Alimenter la barriére & fourche en connectant respectivement les bornes « 5V » et
« L» de la barriére a fourche aux bornes rouge et bleu « 5V /1A » du compteur
numeérique.

- Court-circuiter les douilles supérieures des bornes « Start/Stop » et « Stop» du
compteur numérique a 4 décades. .

- Connecter I'une de ses douilles court-circuitées 4 la borne « Out » de la barriere a
fourche.

- Allumer le compteur et sélectionner le mode « TIMER » en utilisant le bouton
« FUNKTION » et le mode « [ | » en utilisant le bouton « TRIGGER ».

- Le compteur est apte & prendre des mesures en actionnant le bouton « START ».

- Vérifier le bon fonctionnement de I’ensemble en coupant deux fois le faisceau
lumineux.

- Laremise a zéro est obtenue en actionnant le bouton « RESET » du compteur.
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- Pour mesurer une période actionner une premiere fois le bouton « START » pour
mesurer une premicre demi période puis actionner une deuxiéme fois le méme bouton
« START » et la durée de la deuxiéme peériode s’ajoute & la premiére. Attention
mesurer ’autre demi période mais pas Ja méme deux fois de suite. Ceci corrigera
I"éventuelle non équidistance de placement de la barriére a fourche.

Dans toutes les mesures, on veillera & ce que les amplitudes soient suffisamment faibles
pour pouvoir utiliser I'approximation sing = tang = ¢ (¢ <359

3.3 Détermination de la constante de rappel &£ du ressort par la méthode statique

Bien ajuster le zéro des échelles aux positions d'équilibre des pendules. Ecarter le
pendule a gauche d'un angle ¢ et lire I'écartement ¢> du pendule & droite. Dresser un tableau

de mesures. Tracer la courbe 2 - ¢ = figh) et déduire la constante de rappel k du ressort en
utilisant les informations rapportées dans I’aperqu théorique.

3.4 Etude du mode symétrique

Ajuster les deux cylindres de fagon 4 ce que les deux pendules aient la méme période,
fixer la distance de la base de la masse cylindrique & I’axe de rotation & / = 60 cm. Fixer le
ressort de couplage 4 la méme distance de l'axe de rotation sur les deux pendules (a = 30 cm).
La distance horizontale entre les deux pendules doit étre suffisante pour que le ressort ait -
toujours une certaine tension, la position au repos des pendules n'est pas la verticale.

Ecarter les 2 pendules d’un méme angle ¢y et les lachés simultanément sans vitesses
initiales. On veillera a ce que les amplitudes soient suffisamment faibles (g < 5°),

Observer et décrire le mouvement des 2 pendules. A ’aide de la barriere optique &
fourche et du compteur mesurer la période du mode symétrique 7° » d’un des pendules. Pour

mesurer une période actionner une premiere fois le bouton « START » pour mesurer une
premire demi période puis actionner une deuxieme fois le méme bouton « START » et la
durée de la deuxiéme période s'ajoute & la premiére. Attention, mesurer I"autre demi période
mais pas la méme deux fois de suite. Cec corrigera ’éventuelle non équidistance de
placement de la barriére a fourche. Etablir plusieurs mesures puis faire une moyenne.

Comparer aux valeurs théoriques (cas du pendule mathématique et cas du pendule
physique). Conclure.

3.5 Etude du mode antisymétrique

Ecarter les 2 pendules d’un méme angle ¢y en sens opposées et les lachés
simultanément sans vitesses initiales. On veillera a ce que les amplitudes soient suffisamment
faibles (g < 5°).

Observer et décrire le mouvement des 2 pendules. A I'aide de la barriére optique a
fourche et du compteur mesurer la période du mode antisymétrique T, d’un des pendules.
Etablir plusieurs mesures puis faire une moyenne.

Le mode antisymétrique est plus délicat & lancer. Observez bien les pendules pendant
quelques secondes avant de lancer I"acquisition : les pendules doivent osciller constamment
en opposition de phase.

Comparer aux valeurs théoriques (cas du pendule mathématique et cas du pendule
physique). Conclure.
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3.6 Visualisation du phénoméne de battement

Ecarter le pendule de droite d’un angle ¢y suffisamment faibles (dy < 5°) et lacher le
sans vitesse initiale. Le pendule de gauche est initialement au repos a la position d’équilibre.

Observer et décrire le mouvement des 2 pendules. Tracer les courbes ¢(f) et & (f) en
faisant apparaitre les phénomeénes de battement et de modulation,

A Paide de la barriére optique a fourche et du compteur mesurer la période 1 des
oscillations. Et 4 I’aide du compteur sans barriére optique, mesurer la période de battement 7.

Comparer aux valeurs théoriques (cas du pendule mathématique et cas du pendule
physique). Conclure.

3.7 Modification du couplage

Refaire les expériences précédentes pour :
I=60cmeta=40cm
[=60cmeta=50cm
[=40cmeta=30cm
[=20cmeta=10cm
Observer et faire des mesures. Lier les conclusions 2 la valeur du coefficient de
couplage 7.
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Travaux pratiques de vibrations et ondes
TP N°5 : Résonance de tension d’un circuit RLC série

1. Principe

La résonance est un phénomene qui se produit lorsqu’un systéme oscillant est excité en
régime permanent par un signal périodique dont la fréquence est égale a une fréquence propre
du systéme. Dans ce cas la, I’énergie absorbée par le systéme est maximale. Les fréquences
peuvent étre en nombre fini (systéme a nombre fini de degrés de liberté) ou en nombre infini
(suite dénombrable en générale) dans le cas des systemes avec propagation. L’étude de la
résonance d’un systetme a un degré de liberté¢ peut étre effectué en considérant un circuit
¢lectrique RLC série. C’est ’objet de ce TP.

2. Objectifs

- Etude du courant et de la tension de circuits oscillants RLC série en fonction de la
fréquence de I’excitation

- Détermination de la fréquence de résonance, du coefficient de qualité et de la bande
passante du circuit.

3. Apercu théorique

On monte en série dans un circuit électrique une résistance R, une bobine d’inductance L
et un condensateur de capacité C (circuit RLC série de la figure 1). Ce circuit est alimenté par
une source de tension alternative :

u=U~2 coswt
En utilisant la régle des mailles u = ug + uy + uc , on obtient 1’équation différentielle
suivante ou i est I’intensité du courant et q la charge du condensateur :

u=iR+L9 + 4
d C

R L C

-

1

<> <> «<—>
UR ur, Uc

Figure 1 : Circuit RLC serie.
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dq

Sachant que i = ar la résolution suivant i de cette équation différentielle donne :
i= Ix/zcos(a)t—(p)
1
oL ———
avec [ = U et tgp ZTa)C

2 _ 1
\/R +(wL a)C)

Les variations du courant efficace I et du déphasage entre le courant et la tension sont
rapportés sur les courbes de la figure 2. On peut remarquer que la courbe /(@) n’est pas
symétrique par rapport a I’axe vertical passant par ay.

Pour w=wm,= \/LI_C appelée pulsation de résonance se produit le phénoméne de

résonance. On observe les caractéristiques suivantes :
- la courbe /(@) présente un maximum d’amplitude égal a U/R
- le déphasage ¢ est nul
- les termes L ay et 1/Cay sont égaux et sont souvent grands devant R
- I’impédance du circuit se réduit a la résistance : Z=R
- I’intensité peut étre grande si la résistance du circuit est petite car / = U/R
- les tensions efficaces U; aux bornes de la bobine et Uc aux bornes du condensateur
peuvent dépasser de beaucoup la tension U aux bornes du générateur

UR [------7
w2 s _____

\4

(ON) (O]

-1t/2

N
>

(,00 0

Figure 2 : Intensité / du courant et déphasage ¢ en fonction de la fréquence

U, =Lo,I et UC:CI

Q)
dou U, =U.=QU avec Q:L_;)O=ﬁ
@y

Q représente le coefficient de surtension a la résonance et est appelé facteur de qualité. Il
peut atteindre des valeurs élevées et entrainer des tensions dangereuses (Il y a danger
d’¢lectrocution pour I’imprudent et de claquage des isolants. La résonance est a éviter
lorsqu’elle expose a de tels risques).

Le phénomeéne de résonance est un phénomeéne général observé notamment en mécanique
et en acoustique. Il intervient chaque fois que la fréquence de I’excitateur, fournissant
I’énergie, coincide avec celle de I’oscillateur ou résonateur la recevant. Ses conséquences
néfastes, allant de la rupture d’une piece dans un ensemble mécanique au défaut de fidélité
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d’un haut parleur, peuvent étre évitées par ’amortissement des oscillations (role joué par la
résistance R du circuit RLC).

Afin de chiffrer ’acuité de la résonance (lorsque la courbe de résonance est aigu€) on
définit une bande passante de largeur B = @, - oy telle que w; et a» se situent de part et
d’autre de ay et correspondent a :

@)= @) =2

On appelle fréquences de coupure les fréquences f; et f> correspondants aux pulsations @y
et an:
fi=g et =52
4. Manipulation
4.1. Matériel utilisé
- 1 bobine de 20 000 spires ayant pour inductance L = 8,7 mH et résistance r; =
20 kQ

- 1 Condensateur variable par décades.
- 1 Résistance variable par décades.
- 1 Générateur de fonctions.
- 1 Compteur numérique a 4 décades.
- 1 Multimetre digital.
- 1 Oscilloscope.

4.2. Exercice préliminaire

En utilisant le circuit de la figure 1 avec R = 9 kQ, L = 8,7 mH et C = 0,5 nF
déterminer en ce référant a la partie théorique :

- La fréquence de résonance f).
Le coeftficient de qualité Q.
Les fréquences de coupures f; et f>.
La bande passante B.
- Vérifier numériquement la relation Q = 27 J;/B

4.3. Mode opératoire préliminaire

Régler le générateur de fonction de la maniere suivante et on garde ce réglage durant
toute la séance :

- Brancher le multimétre digital aux bornes de sortie du générateur. Placer ce
multiméetre en mode mesure de tension continue (DC Voltage).

- Mettre sous tension le générateur fonctionnant en régime sinusoidal.

- Régler le bouton DC-offset du générateur tel que le multimetre indique 0 volt.

- A l’aide du multimétre mis en mode mesure de tension alternative, régler le générateur
a3Vv.

4.4. Intensité du courant en fonction de la fréquence

Réaliser le montage de la figure 3. Régler la résistance variable a R = 9 kQ et le
condensateur variable par décade a C = 0,5 nF.

En faisant varier de facon continue la fréquence f du générateur, observer la variation
de l'intensité i du courant parcourant le circuit. Etablir une analyse de la valeur de i a la
résonance. Déterminer la fréquence de résonance fj.

Dresser un tableau de mesures en multipliants les points autour de la résonance et
tracer la courbe i = f(f). Déduire les fréquences de coupures f; et f> et la bande passante B.
Comparer aux valeurs théoriques et conclure.

Que se passe t-il si on varie R. Conclure.
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|
|
R L C A : Ampéremétre
CM : Compteur digital
- ~ : Générateur de fonction
Figure 3

4.5. Déphasage de ’intensité du courant par rapport a la tension d’alimentation

Réaliser le montage de la figure 4 en gardant les mémes réglages que précédemment.

En faisant varier de facon continue la fréquence f du générateur, observer la variation
du déphasage ¢ entre la tension u aux bornes du circuit et ’intensité i. Etablir une conclusion
surtout a la résonance.

CH2
L T
[
R L C
CM : Compteur digital
v CHI Figure 4

4.6. Tension aux bornes du circuit en fonction de la fréquence

Débrancher 1'oscilloscope du montage précédent et brancher le multimetre
fonctionnant en mode voltmetre aux bornes du générateur. En faisant varier de facon continue
la fréquence f du générateur, observer la variation de la tension u aux bornes du circuit.
Etablir une conclusion surtout a la résonance.

Que se passe t-il si on varie R. Conclure.

4.7. Facteur de qualité

Régler le générateur de fonction a la fréquence de résonance fy. A I’aide du multimeétre
mesurer les tensions efficaces U aux bornes du générateur, U, aux bornes de la bobine et Uc
aux bornes du condensateur. Déduire le facteur de qualité et comparer a la valeur théorique
(tenir de la résistance interne du générateur).
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Travaux pratiques de vibrations et ondes
TP N°6 : Analyse de Fourier

1. ButduTP
Le but de la manipulation consiste & montrer qu’une vibration périodique non sinusoidale
représentée par une tension électrique se décompose en une somme de vibrations sinusoidales.
2. Rappels théoriques
2.1. Principe
Soit f(#) une fonction de période 7. Si elle vérifie certaines conditions mathématiques
(pratiquement toujours réalisées en physique), on peut la développer en série de fonctions
trigonométriques appelée série de Fourier. On peut écrire f{¢) sous la forme :

A1) = a_20 + Z(ancosna)ot + b, sinnw,t)
n=1

T T r
a, = % J:"’Z fodt ; an = % '[i ft)cosnatdt ;5 b, = % J.,Zz fD)sinnaw,yt dt
2 2 2

Si f(t) a une parit¢ déterminée, le développement ci-dessus est particulierement
commode, car : b, = 0 si f{f) est paire et a, = 0 si f{¢) est impaire. De plus, si f{¢) est réelle, les
coefficients a, et b, sont réels.

2.2. Décomposition d’un signal carré A0

f(t)=-Upour—%£t<O Ul

772
f(?) impaire = a,=ap=0 -T2 0 t
4U
@p+Dz -U
On déduit la composition du signal :
A = 47Usina)0t + g—gsin3 @t + g—gsinS Wyt + -
Le spectre du signal est composé
uniquement d’harmoniques impaires. Pour
toutes ces harmoniques, la phase initiale et
leur amplitudes décroissent en proportion
inverse de leur ordre. Le spectre du signal
a donc la forme ci-contre.

fity=Upour 0L ¢t < %

v

On trouve b,,,, =

b, A 4U

@ 3wy Sawy Tawn Yy
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2.3. Décomposition d’un signal triangulaire
_4U _I - T
) = Ttpour 4_t<4 NG
§(03) T (2 {) pour A <t 4 U
f(?) est impaire = a,=ap=0
8U(-1)”

bn = W aveCc p = 0,1,2, """

La fonction se décompose de la fagon suivante :
1 1

A = %z—l{(sina)ot—gsin3a)0t+2—5sin5w0t+ ----- ) I s U

NGO

v

Le spectre du signal est composé m?
d’harmoniques impaires dont les amplitudes U
décroissent en proportion inverse des carrés de 2572
leur ordre et dont les phases sont soit nulles soit 3o | Ty
égales a signe alterné. Ce spectre peut éEtre o S5m0 o, ®
représenté de la fagon ci-contre 492

2.4. Analyse pratique des signaux D

Pour procéder a I’analyse des signaux
¢lectriques on peut se servir d’un circuit RLC
séric accordé a la fréquence de I’harmonique
qu’on veut étudier.

v

R Ry;
| |
A |

Ue

e\ h

: ) : . 1
R, symbolise résistance interne du générateur, Z,,. = \/R2 + (Lo + C—)2
)

I’impédance du circuit RLC série, u, la tension du signal d’entrée (tension a la sortie
dugénérateur) et u, la tension du signal a la sortie (tension aux bornes de la résistance de
charge R;).

Pour w = w, = ﬁ, I’'impédance du circuit RLC est réelle et prend sa valeur minimale

¢gale a R, le courant traversant le circuit RLC et la tension aux bornes de R, prennent ainsi
leur valeur maximale. On dit que le circuit est en état de résonance.
En état de résonance et si u, est sinusoidale de fréquence f, =2—°, le coefficient de
V2
division de tension du circuit s’écrit :
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u (R, +R )R +R)+R R,

e

Si u, est périodique pouvant étre décomposée, le circuit va répondre seulement a la
composante de pulsation ay. C’est a dire que la tension u, aux bornes de R, va contenir surtout
I’harmonique de pulsation ay qui elle n’est pas atténuée. Ainsi on peut analyser un signal
¢lectrique périodique en accordant le circuit RLC aux fréquences des différentes harmoniques
composant ce signal.

1. Manipulation
3.1. Montage expérimental et caractéristiques du circuit
Réaliser le montage électrique ci-dessus. Brancher un oscilloscope de telle fagon
qu’on puisse observer u, sur CHI et u, sur CH2. Ce circuit satisfait aux caractéristiques
suivantes :
- Lecircuit RLC est composé d’un condensateur variable par décade dont la capacité de
départ est fixé a C = 110 nF et d’une bobine de 1600 spires, d’inductance L = 50 mH
et de résistance R; = 45 Q. La résistance du circuit RLC est ainsi R = R;,
- Résistance de charge R; est de 22 Q et les résistances d’entrée et de protection sont
R, =100 QetR,,=22Q
- Vérifier par calcul que la fréquence de résonance fy = 2147 Hz et que le coefficient de

division de tension du circuit —= = 0.0467
u

e

3.2. Analyse d’une tension carrée

Choisir la gamme de fréquence du générateur de 1 a 10kHz, la tension de sortie aussi
grande que possible et la forme d’onde sinusoidale.

- Ajuster Ca 110 nF

- Accorder le générateur a la fréquence de résonance fj (la tension u; aux bornes de R;
doit étre maximale)

- Choisir la forme d’onde carrée, mesurer son amplitude U sur la voie CHI1 de
I’oscilloscope.

- Observer la forme du signal de sortie. Expliquer. Mesurer son amplitude Us.

- Déduire ’amplitude de ’harmonique d’entrée U, en utilisant la valeur du coefficient
de division de tension du circuit.

- Calculer la valeur théorique donnée par le développement de Fourier. Comparer.

- En variant C, accorder le circuit aux fréquences des harmoniques consécutives 3/ puis
5fo. En effet, pour faire varier la fréquence de résonance du circuit » fois il suffit de varier
la capacité C du condensateur 1/n” fois. Par exemple, si C = 110 nF la fréquence est fj,
alors C = 110/9 nF = 12,2 nF correspond a une fréquence de 3.

- Refaire les étapes 5 a 7 de ce présent paragraphe pour chacune des 2 fréquences.

- Représenter les résultats sous forme de tableaux et tirer les conclusions.

3.3. Analyse d’une tension triangulaire
Refaire I’étude précédente pour une forme triangulaire du signal délivré par le
générateur.
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