
 

Travaux pratiques de mécanique et de vibrations et ondes 
Page 1 

Université Mouloud Mammeri de Tizi-Ouzou 
Département de physique 

 
 
 
 
 

 
 
 
 
 

 
Travaux pratiques de mécanique et de 

Vibrations et ondes 
 
 
 
 
 

Domaine : sciences techniques 
            Filière : génie mécanique, génie-civil & génie électrique  

      Année universitaire : 2016/2017 
 
 
 
 
 

               
 
 
 
 
 
 
 
               TP1 : Moments d’inertie et mouvement de torsion 
               TP2 : Oscillations libres et forcées. Pendule de pohl 
               TP3 : Pendule réversible 
               TP4 : Oscillations libres de pendules couplés 
               TP5 : Résonance de tension d’un circuit RLC série 
               TP6 : Analyse de Fourier 

8 9 



 

Vibrations et ondes : TP N°1 page 1 sur 5 

 
Université Mouloud Mammeri Tizi-Ouzou 
               Faculté des Sciences 
 

 
 

Travaux pratiques de vibrations et ondes 
TP N°1 : Moments d’inertie et mouvements de torsion 

    1.Principe 
Différents corps exécutent autour de leur axe de centre de gravité des mouvements 

oscillants de torsion. On mesure la durée des oscillations ce qui permet la détermination du 
moment d’inertie. 
 

objectifs 
- Déterminer la constante de torsion d’un ressort en spirale. 
- Déterminer le moment d’inertie d’un disque, d’un cylindre creux, d’un cylindre plein, 

d’une sphère et d’une barre. 
- Déterminer le moment d’inertie de deux points matériels en fonction de la distance 

verticale à l’axe de rotation. Le centre de gravité se trouve sur l’axe de rotation. 
- Vérification du théorème de Steiner (théorème des axes parallèles) en déterminant le 

moment d’inertie d’un disque en fonction de la distance verticale de l’axe de rotation 
au centre de gravité. 

 
1. Aperçu théorique 
Tout point matériel de masse m animé d’un mouvement circulaire de rayon r est soumis à 

une accélération 


non nulle (car la vitesse n’est pas constante en module et en direction) et 

par suite, à une force 


mF   non nulle et dont la direction est située dans le plan de la 

trajectoire. La composante tangentielle de la force s’écrit : 

dt

d
mr

dt

dv
mFt


  

dt

d
mrrFt

2  

Les divers points, d’un solide en rotation autour d’un axe , ont même vitesse angulaire  

et même accélération angulaire 
dt

d
. En écrivant pour chaque point du solide en rotation la 

relation précédente et en sommant sur tous les points, on obtient : 

 
dt

d
mrrFt


)( 2  

La quantité positive  2mrJ est par définition le moment d’inertie du solide par 

rapport à l’axe . Il caractérise la répartition de la masse du solide par rapport cet axe. Le 
mouvement de rotation d'un solide est influencé par son moment d'inertie. Ce dernier 
caractérise l'inertie du système à modifier sa vitesse angulaire. Exemple: le mouvement d'un 
patineur lorsque celui-ci effectue une figure de toupie :  

- si les bras du patineur sont écartés alors le moment d'inertie est important et le 
patineur tourne moins vite ;  

- si les bras sont le long du corps alors le moment d'inertie est faible et la vitesse de 
rotation du patineur augmente. 

Remarque : la masse joue un rôle analogue dans les mouvements de translation. 
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 trF est le moment résultant ou couple par rapport à l’axe des forces appliquées. On le 

représente par M


. La relation fondamentale de la dynamique s’écrit dans le cas de rotation : 

d
M J

dt







 

 Les moments d’inertie d’un corps par rapport aux axes de coordonnées cartésiennes 
sont données par : 

dzdydxzydvzydmzyJ
vm

x  )()()( 222222    

dzdydxzxdvzxdmzxJ
vm

y  )()()( 222222    

dzdydxyxdvyxdmyxJ
vm

z  )()()( 222222    

où m,  et v sont respectivement la masse, la densité et le volume du corps. x, y et z sont les 
coordonnées d’une particule élémentaire de volume dv et de masse dm. 

Selon le théorème de Steiner (théorème des axes parallèles), le moment d’inertie J 
d’un corps par rapport à un axe arbitraire  est égal à la somme du moment d’inertie J’ de ce 
corps par rapport à un axe ’ parallèle à  et passant par le centre d’inertie du corps et du 
produit de la masse du corps par le carré de la distance a entre les axes  et ’ : 

2
' amJJ    

 
 Expression de quelques moments d’inertie : 

Disque (figure 1a) 

2

2r
mJ   

4

2

'

r
mJ   

Tige (figure 1b) 

12

2l
mJ   

3

2

'

l
mJ   

Cylindre creux (figure 1c) 
2mrJ   

Cylindre plein (figure 1c) 

2

2r
mJ   











124

22

1

lr
mJ  

2
2

2

3
mrJ   

Sphère creuse (figure 1d) 

2

3

2
mrJ   

Sphère pleine (figure 1d) 

2

5

2
mrJ   

Figure 1a 
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Un pendule de torsion est constitué par un corps oscillant homogène, suspendu en un 
point O à un ressort spiral de constante de torsion C. Le moment d’inertie du corps par rapport 
à l’axe de rotation est J. Si on fait tourner, dans le plan horizontal, le corps d’un angle , il 
sera soumis à un couple de torsion : CM r   et si on le lâche, il sera équilibré par le 

couple d’inertie 
dt

d
JJM i


   .  

D’où d’après la loi fondamentale de la dynamique : 

0  CJ   

En introduisant la pulsation 
C

J
0 , l’équation du mouvement devient 02

0   . Sa 

solution est : )cos( 0   ta et sa période est 
C
JT 2 . Ainsi si on mesure la durée de 

l’oscillation, on peut déterminer le moment d’inertie du corps par la relation : 

2

2

4

CT
J   

 
2. Manipulation 

2.1 Matériel utilisé 
- Axe de rotation 
- Différents corps : sphère, disque, cylindre creux, cylindre plein, barre avec masses 

mobiles et disque avec trous diamétraux. 
- Dynamomètre 2,5 N 
- Barrière lumineuse  à fourchette. 
- Compteur électronique digital à 4 décades. 
- Divers supports et câbles de connexion. 

2.2 Mode opératoire de la barrière optique à fourche 
La barrière optique à fourche permet de commander électroniquement des compteurs, des 

horloges et d’autres appareils électroniques. Dans notre cas, elle est raccordée à un compteur 
numérique à 4 décades réglé à la fonction chronomètre. La diode lumineuse s’allume lorsque 
la diode photo-électrique est obscurcie. Le  récepteur est placé dans un petit orifice pour le 
protégé des lumières parasites. En un endroit quelconque entre la source de lumière et le 
récepteur, il suffit d’un corps d’un diamètre efficace de moins de 1 mm pour obscurcir le 
récepteur et à proximité immédiate de l’orifice du récepteur un diamètre de 0,3 mm suffit. La 
sensibilité de réponse optimale est réglée automatiquement lors de l’enclenchement de 
l’appareil et chaque fois que l’on actionne la touche « SET ». 

Le mode opératoire de branchement de la barrière optique au compteur numérique à 4 
décades réglé à la fonction chronomètre se fait comme suit : 

- Visser la tige de 25cm à la barrière à fourche de telle façon que cette barrière montée 
sur une embase, le faisceau lumineux est verticale. 

- Alimenter la barrière à fourche en connectant respectivement les bornes « 5V » et 
«  » de la barrière à fourche aux bornes rouge et bleu « 5V /1A » du compteur 
numérique. 

- Court-circuiter les douilles supérieures des bornes « Start/Stop » et « Stop » du 
compteur numérique à 4 décades. 

- Connecter l’une de ses douilles court-circuitées à la borne « Out » de la barrière à 
fourche. 

- Allumer le compteur et sélectionner le mode « TIMER » en utilisant le bouton 
« FUNKTION » et le mode «   » en utilisant le bouton « TRIGGER ». 
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- Le compteur est apte à prendre des mesures en actionnant le bouton « START ». 
- Vérifier le bon fonctionnement de l’ensemble en coupant deux fois le faisceau 

lumineux. 
- La remise à zéro est obtenue en actionnant le bouton « RESET » du compteur. 

2.3 Mesure de la constante de torsion du ressort en spirale 
La mesure de la constante de torsion est réalisée selon le montage de la figure ci-dessous 

et selon le mode opératoire suivant : 
- Monter l’axe de rotation sur un trépied. 
- Fixer la barre (sans les masses) en son milieu sur l’axe de rotation. 
- Placer la barrière lumineuse à fourche de telle façon que la barre immobile interrompe 

le rayon lumineux. Le LED d’affichage de la barrière lumineuse s’allume. 
- Tourner la barre de  = 180°. En cette position, la barre interrompe à nouveau la 

barrière lumineuse et la diode luminescente d’affichage s’allume à nouveau. 
- A l’aide d’un dynamomètre placé perpendiculairement à la barre, mesurer la force F 

nécessaire pour écarter la barre et mesure aussi le bras de levier (distance entre le 
dynamomètre et l’axe de rotation). 

- Refaire les deux dernières opérations pour  = 2 et 3. Attention : ne jamais subir au 
ressort une rotation au-delà de  720°. 

- Déduire le moment de torsion puis la constante de torsion. 
 

 
 

4.4 Mesure du moment d’inertie de différents corps 
Dans cette partie, on mesure la période des oscillations de différents corps afin de 

déterminer le moment d’inertie en utilisant la relation entre le moment d’inertie J, la période 
des oscillations T et la constante de torsion C du ressort en spirale. La manipulation est 
réalisée selon le mode opératoire suivant : 

- Fixer le cylindre plein sur l’axe de rotation (figure ci-dessus). 
- Mettre en place un écran fixé par collage sur le cylindre (exemple du scotch non 

transparent). 
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- Le cylindre étant en position de repos, placer la barrière lumineuse de telle façon que 
l’écran coupe le faisceau lumineux. 

- Tourner le cylindre de 180°. 
- Actionner le bouton « RESET » puis le bouton « START » du compteur numérique et 

lâcher le cylindre. 
- Relever la valeur indiquée par le compteur numérique. Cette valeur représente la durée 

d’une demi-oscillation. 
- Refaire la mesure en tournant le cylindre de 180° dans le sens opposé. La période des 

oscillations étant ainsi la somme des deux durées mesurées. 
- Déduire la valeur du moment d’inertie du cylindre plein. 
- Refaire la même expérience en remplaçant le cylindre par un cylindre creux, puis par 

une sphère, puis par un disque et en enfin par la barre métallique sans les masses 
(Remarque : un écartement de 90° au lieu de 180° est recommandé pour la barre 
métallique). 

- Comparer les valeurs expérimentales du moment d’inertie des différents corps aux 
valeurs calculées en utilisant les caractéristiques ci-dessous : 

Corps Dimensions Masse 
Cylindre plein r = 4,95 cm m = 367 g 
Cylindre creux rint = 4,6 cm et rext = 5 cm m = 372 g 

Sphère r = 7 cm m = 761 g 
Disque r = 10,8 cm m = 284 g 

Barre sans masses L = 60 cm m = 133 g 
- Conclure 

 
4.5 Mesure du moment d’inertie de deux masses identiques en fonction de leur 

distance à l’axe de rotation 
- Fixer la barre métallique sur l’axe de rotation (Le centre de gravité de la barre doit être 

sur l’axe de rotation). 
- Glisser de chaque coté de la barre une des deux masses de 441g. 
- Placer ces masses de façon équidistantes, à une distance de a = 5 cm de l’axe (distance 

vis à vis). 
- Mesurer la période des oscillations et déduire le moment d’inertie J du système barre – 

masses. 
- Refaire la manipulation pour a = 10, 15, 20 et 25 cm. 
- Dresser un tableau de mesures et tracer la courbe J = f(a2). 
- Déduire la masse des deux masses utilisées et conclure. 

4.6 Vérification du théorème de Steiner 
- Fixer le disque circulaire avec trous diamétraux sur l’axe de rotation. Ce disque est 

placé de telle façon que l’axe de rotation passe par le centre de gravité (a = 0). 
- Après avoir écarter le disque de 180°, mesurer la période des oscillations et déduire le 

moment d’inertie. 
- Refaire la même expérience en déplaçant l’axe de rotation de a = 3, 6, 9 et 12 cm par 

rapport à l’axe passant par le centre de gravité du disque. 
- Dresser un tableau de mesures et tracer la courbe J = f(a2). 
- Le théorème de Steiner est-il vérifié ? 
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Travaux pratiques de vibrations et ondes 
TP N°2 : Oscillations libres et forcées. Pendule de Pohl 

 
1. Principe 

Dans le cas d’un système oscillant librement, la décroissance de l’amplitude des oscillations est fortement 

dépendante de degré de l’amortissement. En régime permanent de cas de système soumis à une excitation 

sinusoïdale, l’amplitude des oscillations est liée à la fréquence et à l’amplitude de l’excitation et aussi au degré 

d’amortissement. On relève lors de cette séance de travaux pratiques, les courbes caractéristiques des oscillations 

libres ainsi que de la courbe de résonance d’oscillations forcées d’un pendule de torsion de Pohl.  
Objectifs 

- Mesurer l’amplitude des oscillations d’un pendule de torsion en fonction du temps 
pour divers degrés d’amortissement. 

- Déterminer la constante d’atténuation et le décrément logarithmique pour ces divers 
degrés d’amortissement. 

- Visualiser la résonance et étudier son « intensité » en fonction de l’amortissement. 
 
2. Aperçu théorique 

2.1 Oscillateurs linéaires amortis en régime libre 
Dans le cas d’oscillations d’un pendule soumis à l’action d’un couple de rappel -C  et 

d’un couple freinage proportionnel à la vitesse -f  , le mouvement de ce système oscillant 
obéit à l’équation différentielle suivante : 

0I f C       

  est l’angle de rotation, 
d

dt


   est la vitesse angulaire, 

2

2

d

dt


   est l’accélération 

angulaire, f est la constante de proportionnalité de l’amortisseur et I est le moment d’inertie du 
pendule par rapport à l’axe de rotation. 

Si on pose 0

C

I
   pulsation propre de l’oscillateur et 

2

f

I
   coefficient 

d’amortissement, l’équation différentielle devient : 

02 2
0     

C’est une équation différentielle du second ordre à coefficients constants. Sa solution est 

de la forme rtAe   et dépend du discriminant 2 2
0     de l’équation caractéristique : 

2 2
02 0r r     

1er cas : 00     

L’amortissement est faible, l’équation caractéristique admet 2 racines complexes : 
2 2
0-      avec r j         

La solution  1 2
t j t j te A e A e       peut se mettre sous la forme :  costae t     

C’est une sinusoïde amortie : le régime est oscillatoire amorti. 

2ème cas : 00     
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L’amortissement est fort. L’équation caractéristique a deux racines réelles -r     

avec 2
0

2   . La solution est de la forme :  1 2
t t te A e A e      . 

Il n’y a plus d’oscillations, le régime est apériodique. 
3ème cas : 00    

Le coefficient  est égal à la pulsation propre de l’oscillateur, c’est le régime critique. 
L’équation caractéristique admet une racine double -r  . La solution devient alors : 

 te a bt   . 

En régime oscillatoire et lorsque l’amortissement est faible, l’équation du mouvement 

s’écrit :  costae t    . Les constantes a et  sont déterminées à partir des conditions 

initiales. On peut choisir par exemple à 00,  et 0t      . Dans ce cas l’oscillateur est 

dévié d’un angle 0  puis abandonné à lui-même sans vitesse initiale. Avec ces conditions 

l’équation du mouvement devient : 

 0
0 cos     avec te t tg 

    
 

    

 
 
 
 
 
 
 
 
 
 
 

La courbe qui représente cette fonction est une sinusoïde amortie comprise entre deux 

exponentielles d’équation : 0
0

te 
 


  . Le mouvement est pseudo périodique, car, en 

raison de l’amortissement, il ne se reproduit pas de la même façon au bout d’un temps 
2

T



 . L’intervalle T séparant deux amplitudes consécutives est constant. T est la pseudo 

période. Le rapport de deux amplitudes consécutives est : 

1

Tn

n

e e 

 

   

où 
1

n

n

T Log


 
 

 
   

 
 est le décrément logarithmique. L’oscillateur effectue un certain 

nombre d’oscillations et finit par s’immobiliser à sa position d’équilibre. 
2.2 Oscillateurs amortis en régime forcé 

Le pendule est en plus soumis à l’action d’un couple périodique  0 cosa aM M t , 

l’équation différentielle régissant l’oscillateur devient :  
2
0 02 cos( )aF t         

où 0
0

M
F

I
  et a est la pulsation imposée. La solution générale de cette équation est la 

somme de la solution sans second membre et d’une solution particulière avec second membre. 

t 

 

te 

  0

0
 

te 

  0

0
 

0 

n 

n+1 
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La première n’intervient que durant le régime transitoire, quant à la seconde, elle représente 
l’évolution de l’oscillateur lorsque le régime permanent est établi. 

En régime permanent, le système oscille à la pulsation imposée a avec une amplitude a  

et un déphasage  par rapport à l’excitation aM  :  

 ( ) cos -a at t     

0 0
0 222 2 0

0 0 0

     où   

1 2

a

a a

F
 


 

  

 
    
     
     

 

2 2
0

2 a

a

tg



 




 

 
3. Exploitation expérimentale 

3.1 Matériel utilisé 
- Un pendule de torsion selon Pohl 
- Une alimentation universelle 
- Un pont de diode 30 V AC / 1 A DC 
- Un ampèremètre. 
- Un chronomètre. 
- Divers câbles de connexion. 
3.2 Montage et mode opératoire 

Réaliser le montage conformément à la figure ci-dessous : 
 

 
 
Le moteur servant de source de vibrations forcées au pendule de torsion est alimenté à 

partir de la source variable de l’alimentation universelle puis redressée par un pont diode. Les 
bornes de la source continue de l’alimentation universelle sont directement reliées au système 
de frein à courant de Foucault. On place un ampèremètre dans le circuit qui alimente le frein 
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afin de mesurer l’intensité du courant IF. Cette intensité indique le degré de d’amortissement. 
IF ne doit en aucun cas dépasser 1A. On représente sur la figure ci-dessous le schéma du 
circuit électrique. 

 

 
 

3.3 Etude du régime libre amorti 
- Le moteur d’excitation étant à l’arrêt et le frein à courant de Foucault non alimenté 

(IF = 0 A). 
- Ecarter le pendule jusqu’à ce qu’il vienne en butée et lâcher sans vitesse initiale. 
- Mesurer la période T des oscillations. (on recommande de mesurer la durée 5 à 

10T de 5 à 10 oscillations) 
- Relever l’amplitude A des oscillations toutes les 10 périodes. 
- Dresser un tableau de mesure et tracer la courbe A = f(t). 
- Déduire la constante d’atténuation  et le décrément logarithmique . 
- Refaire la même manipulation en actionnant le frein à courant de Foucault : IF = 

0,25A ; 0,40A ; 0,55A et 0,90A. On recommande d’augmenter la fréquence de 
relevé de la valeur de l’amplitude afin d’avoir suffisamment de points 
expérimentaux. 

- Conclusion 
3.4 Etude du régime forcé. Visualisation de la résonance 
- Le pendule de torsion étant au repos et le frein à courant de Foucault étant non 

alimenté (IF = 0 A), allumer le moteur en l’alimentant avec une tension de 15 V. 
- Avec le bouton « Grob », diminuer graduellement la vitesse du moteur jusqu’à 

l’apparition de la résonance (mouvement oscillatoire à amplitude maximale). Et à 
l’aide du bouton « Fein » faire des réglages fins. 

- Relever alors la période Ta des oscillations (vitesse du moteur) et ainsi que 
l’amplitude maximale a. 

- Refaire la même manipulation en régime amorti, c’est à dire à IF = 0,25A, 0,40A, 
0,55A et 0,90A. 

- Dresser un tableau de mesure et comparer Ta et T (période des oscillations en 
régime libre). 

- Conclure. 
 
 

Frein Moteur 

Pendule de Pohl 

+ - ≈ 
≈ 

+ 
- 
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Travaux pratiques de vibrations et ondes 
TP N°3 : Pendule réversible 

 
1. Principe et objectifs 
  

En mesurant les périodes d’oscillations d’un pendule réversible (ie : possédant deux axes 
de rotation opposés), la valeur de l’accélération de la pesanteur g peut être déterminée sans 
connaître ni la masse, ni le moment d’inertie  du pendule.  
 
2. Aperçu théorique 
 

La durée d’oscillation T d’un pendule physique ou pendule pesant (Fig.1), oscillant autour 
de l’axe A  avec une faible amplitude, est donnée par : 
 

                     
gsm

J
T

A
A

..
2                             (1)                 

                                          
JA : Moment d’inertie rapporté à l’axe de rotation A 
m : Masse du pendule 
s : Distance du point A au centre de gravité S 
g : Accélération de la pesanteur 
 

On définit  la longueur réduite du pendule par                                      

 
.
A

r

J
l

m s
  ;     (1) devient  2 r

A

l
T

g
        (2)     Fig.1 

et correspond ainsi formellement à la relation valable pour un pendule mathématique (ou 
pendule simple) de longueur lr.  Un pendule physique de longueur réduite lr a donc la 
même durée d’oscillation qu’un pendule mathématique de longueur l=lr. 

Le point M, situé dans le prolongement de AS


à une distance lr  de 
l’axe de rotation A est appelé centre d’oscillation.  
Montrons que si l’on inverse le pendule de façon à  
faire passer l’axe de rotation par M (Fig.2), la période des  
oscillations reste inchangée et que A devient centre  
d’oscillation (ie : A=A’).  
La période du pendule physique par rapport à 

  l’axe de rotation M  s’écrit : 2
. .

M
M

M

J
T

m S g
                                                              

Fig.2 
                
JM : Moment d’inertie rapporté à l’axe de rotation M 
SM : Distance du point M au centre de gravité S 

 
et la nouvelle longueur réduite est :  
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
,    (SM= lr-s )                    

En remplaçant dans l’expression des longueurs réduites JA et JM en fonction de JS, 
(théorème de Steiner), on obtient :  

s
sm

J

sm

msJ
l

Ss

r 



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 ;                                              (3) 

et  
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r 
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


                    (4) 

En remplacent dans (4) lr par son expression (3) : 
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L’égalité des longueurs réduites entraîne l’égalité des périodes d’oscillation autour des 
axes A et M, périodes aussi égales à celle d’un pendule simple de longueur lr.  

Cette propriété est exploitée dans ce TP : En faisant varier la position d’un axe de rotation 
et en mesurant les périodes d’oscillation du pendule relatives aux 2 axes, on déterminera le 
centre d’oscillation et de ce fait la longueur réduite lr  du pendule.    

 
3. Manipulation 
 

3.1 Matériel utilisé 
- 02 trépieds 
- 02 tiges carrées 1m 
- 01 tige cylindrique 75cm  
- 02 tiges à couteaux 
- 05 Noix doubles 
- 02 Axes coulissants. 
- 01 compteur digital 
- 01 barrière à fourche 
- 01 mètre 
- 03 fils électriques 

          

Fig.3 
3.2 Montage expérimental   
Le montage expérimental est illustré dans la Fig.3. S’assurer que les vis de serrage 

des noix sont bloqués, et que l’ensemble trépieds + tiges ne bouge pas lorsque le pendule 
oscille. Vérifier que les couteaux supportant le pendule sont horizontaux et que le plan 
d’oscillation est parfaitement vertical. 
 Marquer au crayon un axe coulissant (1) et  le fixer à 10 cm d’une extrémité de la 
tige. Les périodes d’oscillations mesurées avec cet axe de rotation seront notées T1. 
Cet axe sera gardé fixe tout au long du TP. 

Placer le deuxième axe coulissant à ~ 8cm de l’autre extrémité de la tige. Les 
périodes d’oscillation mesurées avec cet axe de rotation seront notées T2. La position de 
cet axe sera variable et la distance entre les deux axes  sera notée 

Alimenter la barrière à fourche en connectant respectivement les bornes « 5V » et «  » de 
la barrière à fourche aux bornes rouge et bleue « 5V /1A » du compteur numérique. 
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Connecter la douille « Start/Stop » du compteur numérique à la borne « Out » de la barrière à 
fourche. 
Allumer le compteur et sélectionner le mode « TIMER » en utilisant le bouton 
« FUNKTION » et le mode «   » en utilisant le bouton « TRIGGER ». 
Vérifier le bon fonctionnement de l’ensemble en coupant deux fois le faisceau lumineux. 

Placer la fourche verticalement entre les trépieds de façon que le pendule interrompe le 
faisceau dans la position d’équilibre, tout en s’assurant que la barrière ne gêne pas les 
oscillations du pendule. (NB : On mesurera ainsi une demi période) 

 
3.3 Mode opératoire  

 
Détermination approximative de lr : 
En premier lieu, mesurer la période initiale T1 du pendule (Axe de rotation : axe (1), 

axe coulissant (2) à 8 cm de l’extrémité).  
Mesurer les périodes T2() du pendules avec comme axe de rotation l’axe (2). On fera 

varier la distance entre les axes de 34 a 60 cm  par pas de  2 cm, en faisant coulisser à 
chaque fois l’axe (2).  

Remplir le Tableau 1, et tracer le graphe  T2(). Déterminer graphiquement les valeurs 
a et s définies par T1=T2(). s correspondant  au cas symétrique (les axes sont équidistants 
du centre de gravité) . a correspond au cas asymétrique et définit  donc la longueur réduite du 
pendule (Nb :s>a )  

Cependant, dans ce qui précède, on a négligé l’influence des masses des axes 
coulissants qui modifient légèrement le moment d’inertie du pendule Js. On peut s’en rendre 
compte en mesurant T1(a). 

 
Détermination précise de lr : 
En gardant toujours l’axe (1) fixe, mesurer  alternativement T1() et T2() en faisant 

varier  de a – 3cm à a +3 cm. Remplir le tableau 2. Tracer les courbes correspondantes et 
déduire graphiquement lr, définie  par le point d’intersection des deux courbes. 

Déduire de la relation (2) la valeur de l’accélération de la pesanteur g. 
En estimant les incertitudes sur  T et  a, évaluer l’incertitude sur g. 
Conclure. 
Remarque : Les périodes doivent être mesurées  pour de faible oscillations, sinon on 

doit prendre en  considération la variation de  T en fonction de : 

2

1

642 ...
2
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2
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64
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2
sin12






















g

l
T  

Le tableau suivant donne l’erreur que l’on commet (en fonction de   lorsque l’on 
utilise la formule d’approximation (2) :    

 
Amplitude  (°) :        0      2    5      10           20      30 
Erreur sur T  (%) : 0      0.0076    0.048      0.191        0.764         1.74 

 



TP l{o4
Osçillati.ons libres de pepdules pouplés

l. Principe

Mise en évidence des caractéristiques es;sentielles d'un système de deux pendules pesants
identiques couplés par un ressort. Visualisation des modes propres d'oicillationJ et du
phénc'mène de battements.

2, Apercu théoriquç

Considérons deux pendr,rles qui sont couplés par un ressort horizontal de constante de
rappel fr à une distance a de I'axe de rotation. Chaque pendule est constitué d'une masse 17x qui
peut osciller librement sous I'effet de son poids -* g aûtour d'un u".. Lu distance entre le
centre de masse du pendule et I'axe de rotation est dénoté par l. Pour déterminer les équations
du mouvement pour les deux pendules, on applique le théorème du moment cinétique :

d L. - -=Y ï7
dt

oir 1, est le moment cinétiqu e, et M le moment de
fbrce,

I-e théorème du moment cinétique pro.ieté sur
I'axe de rotation donne en utilisant I'approximation
sinq =,q et  cosç = I  :

I û, = -mgt O, - ko'@, - ûr)
I ô, = -mgt Q, + kaz (ë, - Ar)

I - ml2 étant le moment d'inertie d'un penclule par
rapporl à l'axe de rotation. L,e moment de force dû
au couplage a des signe:i opposés pour le pendule I
et pour le pendule 2, Ces équations fbrnrent un
systènre d'équations dites couplées, puisque ûr et h
apparaissent dans chacun de ces deux équations. Pour découpler ces équations on les ajoute et
on les soustrait pour obtenir :

I ( A + û r ) * m 7 t ( û t + û ) = 0

I (ô, - ûr) + (mgt + 2ka2 )(û, - ûr) = 0
Par: Ie changement de variable a=ût+ûz et Ê=Qr-ûr, on arr ive à deux équations qui ne
nrélangent plus a et p,

I c t + m g l a = 0

I  F  +@g l  +2ka2 )Ê  =0
et dr:n't les solutions sont données par :

âSlll(Dr asrn$,

a(r )  = l ,  cos( r .o, t  + 6,)

p ( t ) = A r c o s ( a r r f  + 6 r )

At, Az, ôr et fi sont des constantes déterminées par

a v e c  @ t = u t  
/

W.rt*'avec  @2 =  
\ / -  1

les conditions fnitiales.

a l
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I-a solution de l'équation du mouvement pour le pendule 1 et 2 est donc de la forme :
û, = A, cos(rr.r,/ + 4 ) +1, cos( a4t + 6r)

Qz = A, cos(at,t + 6,) - A, cas(a4t + 4 )
Sous certaines conditions initiales, on distingue plusieurs types d'oscillations :

_QSçdl-ations synélriclues :
C'est le premier mode normal d'oscil lation du système. I l correspond aux conditions

init iales ' û,(0) = ôr(0) -. '  /,, et O,(0) = /2 (0) = 0 Si elles sonr introduites dans les équations
précédentes,  e . l les  donnent :  A,=ôc ,  Az=0 ;  ô ,  =0 e t  f i  indéterminée.  Etprésententcomme
solutions aux mouvements dps pendules :

û,(t ) = ûzQ ) = ôncos a.r,t
Pour réaliser ce mode de vibration, il suffit que
les deux masses soient écartées d'un même
angle h et lâchées simultanément sans vitesses
initiales. I-es deux oscillateurs vibrent alors
sinusoïdalement, en phase, avec la même
anrplitude ct à ia même pulsation @1
correspondant à une période :

u)t \ mgt 4

l l  s'agit d'oscil lation,s à une seule fréquence, I-e ;- ?
couplage ne.joue aucun rôle, puisque le res.sort ;, n

re.ste toujours dans le même état de tension. Il 
'2

est alors naturel qu'on retrouve la période du 
-4

perrdule r; imple. Si le système est excité
initialement se mode propre, il le reste par la
,sulte.

Osctlkttipnl altisvmetriq :
C'est le second mode normal d'oscillation du système. Il correspond aux conditions

in i t ia les :  û , (O)=Qr;  Ar (0)=-ûo e t  / , (0)= i r1o;=0.  S i  e l les  sont  in r rodu i tes  dans les
équations précédentes, elles donnent '. At =0 ) Az = ûo i 6t indéterminée et 4 = 0. Et
présentent comme solutions aux mouvements des pendules :

û,(t) = -ër(r ) - Qo cos a4t
Pour réaliser ce mode de vibration, il suffit quc
les deux masses soient écartées d'un même anglt:
h en sens opposées et lâchées simultanément
:iAns vitesses init iales. Les deux oscil lateun;
vibrent alors sinusoïdalement, en opposition dt:
phzise, avec la même amplitude et à la mêmt:
ptrlsation (th eorrespondant à une période :

2r
- - L 7 T

û\ \i mgl +2ka2
2n

Il s'agit de nouveau d'une oscillation à une seulcr
fi'équence, mais le couplage entre les deux
pendules résulte en une diminution de la période,
Si le système est excité initialement à"se modt:
propre, i l  le reste par la suite.

I
I

I
I

I
I
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\
t

{
I
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\
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t {sl
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T
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P!énomèng de b3ttement ',*,o,oo 
,-,',,,rnnrrnrrêq rr: rnnrrVÊ.ï 

' 
rmbinaison linéairgpour des conditions initiales quelconques, le mouvement est une cc

t1es mcrdes et pulsations propres. Ainsi, aux conditions initiales ër(Ù = ûo ; /r(0) = 0 et

/,(0) = d,(0) = 0 , coïrespond le mouvement dit des < penduies sympathiques >. Si elles sont

introdr-rites dans les équations du mouvement des
0,

pendules, elles donnent : A, = A, - 
T 

et

â, - rï, = 0 . Et présentent comme solutions :

d,ir ) = /o cos ("+, l.o, (ry,\
\ L / \ L /

û=(r )= /o sin ( 
"+r ) rin ( u+,)

\ / - / \ L /

On observe que I'amplitude d'un des

modulée par 1a fâible fiéquence 
@? -n(Ù-, [,e

L

T entre le sinus et le cosinus' traduitdéphasage de t,

les battements entre les deux pendules : lorsque un pendule a son amplitude maximale, I'autre

est arr.êté. L'énergie mécaniqure passe progressivement à chaque oscillation d'un pendule à

l,autre par I'interÀédiuire du ressort de couplage, alors QUe, dans un mode normal' chaque

oscillateur conserve son énergie, La période d'oscillation r vaut :

2t T ,u,T,u.

!\:0r- T,u, +T ,u,
2

et la périgde de battement 16 (qui coffespond au temps compris entre trois arrêts sonsécutifs

c1u môme pendule)

T. = 4--T" 'T'u '' h  
@ z - - @ t  T , u , - 7 , u ,

2,
des oscillateurs est estimé par une grandeur X appelé coefficient de couplage des

Il est compri,s entre 0 (oscillateurs indépendants) et I (oscillateurs rigidement

T rr, 
-T 

ru,x = 
,,; *r,;

Prise en compte de l.'état pe{rdulq physique :

L,'expression donnée pour û, et h clans les équations

précédentes n'est valable que pour un pendule formé par une

masse ponctuelle (pendule mathématique). Dans le cas où la

masse a une cenaine extension spatiale (pendule physique), il

t-aut tenir compte de sa géométrie. Dans notre cas, le pendule

est formé par un cylindre creux attaché à ttne tige métallique,

4

r7 .l

. 4

pendules, variant à la fréquence

Le couplage
oscil lateurs.
l iés;  :

I [$]

dont la masse n'est plus négligeable. Donc le centre de masse ne se trouve

cylinclre creux ! En plur, il faut tenir compte de la contribution de la tige au
pas au centre du
moment d'inertie

t ' ,

4

2
t o
-N=- -2

-4
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total du pendule, Appliquer le théorème d,e Steiner séparément au cylindre creux et à la tige

rnétallique. Sommer les cleux moments d'inertie partiels pour obtenir le moment d'inertie total
clu pendule. Pour un cylinclre de masse mrde rayon r et de hauteur h,le moment d'inertie par

rapport à un axe passant par ie centre de mrlsse et perpendiculaire à son axe de révolution est :

I , ,= *frr, * hr)
1 2

L,e moment d'inertie cl'une barre de nlasse tn6 de longueur lt par rapport à un axe
perpendiculaire et passant par son extrémité I 

, ,
In=y+

J

L,e moment d'inertie d'un pendule par rapport à I'axe de rotation devient alors :
/ t \ L

I  = l t , + 1 , + * , l l - + l'  v \  
2 )

Dans ce cas, les éq

Et I'expression des

ment des pendules doivent être modifiées :
l \

m t E + l d , - k a z ( 0 , - û r )
z )

l \

mns + 10, + ka' (A, - ûr)
/ l

deviennent :

I
( -  f t )  L

t f  /  - ; ) t f f i n s î
\  

L /

mant le mouve

m  s (  , - l . ) .
! -  

|  ô  |

\  z )

m s (  ,  - l l .
L v  

|  ô  |

\ , / l\  - , /

pres I,r, eI T o,,

_Z=2n  F
a), t'  \ l m ,

uations expri
(

r !  II A = - l
\
(

I Ô ' = - l
\

périodes pro

T,u,

Détermination de la constante de rappel k du &ssort prur Ia méthode statique :

La méthode consiste à maintenir le deuxième pendule dans la positi on h, pendant

qu'on mesure la déviation ût du pendule l. Dans le cas statique I'accélération angulaire

ë, == û, = Q . Des équations du mouvement des pendules, on tire alors

(  ( ,  h )  / , )  1- [  n .  r  
[ ,  

-  
; ) .  

m,e  
î  y , -  ka ' (Q,  -  û , )  =  0

D'où

t-
f t -

Q r - û ,

3. Exploitation_g.xpérimentale

3.1 Matériel utilisé

- 0l système de pendules couplés fixé sur un support stable. Ce système est composé de
deux pendules pesants montés sur un même axe par I'intermédiaire de roulement à bille et
d'un iessort pouvant relier les deux pendules à plusieurs"niveaux. Chaque pendrife est

, ,  [ ,  +)* f f i , r++2ka2

( .  f t )  t ^
tn ,B l  /  

- ;  
I+*rg " : -  a

\  L /  L  Y I

ct'
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3.6 baffement

Ecarter le pendule de droite d'un angle fr suffisamment faibles (fr s 5.) et lâcher lesans ritesse init iale. Le pendule de gauch. eit init ialement au repos à la posit ion d,équil ibre,
observer et décrire le mouvement des 2 pendules, Tracer les courbes Qt(t) et Q2Q) entaisant apparaître les phénomènes de battement et de modulation.
'A I'aide de la barrière optique à fourche et du compteur mesurer la période r desoscillations' Et à I'aide du compteur sans barrière optique, mesurer la période de battementTt.
Comparer aux valeurs théoriques (car; du penOuie mathématique et cas du pendulephysique). Çonclure.

:l'7

Refaire les expériences précédentes pour :

":23:i:l 
;=,13 :i

l = 4 0 c m e t a : j i O c m
l = 2 0  c m e t  A = l 0 c m

observer et f-aire des mesures. Lier les conclusions à
couplage 7,

la valeur du coefficient de
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Travaux pratiques de vibrations et ondes 
TP N°5 : Résonance de tension d’un circuit RLC série 

 
1. Principe 
La résonance est un phénomène qui se produit lorsqu’un système oscillant est excité en 

régime permanent par un signal périodique dont la fréquence est égale à une fréquence propre 
du système. Dans ce cas là, l’énergie absorbée par le système est maximale. Les fréquences 
peuvent être en nombre fini (système à nombre fini de degrés de liberté) ou en nombre infini 
(suite dénombrable en générale) dans le cas des systèmes avec propagation. L’étude de la 
résonance d’un système à un degré de liberté peut être effectué en considérant un circuit 
électrique RLC série. C’est l’objet de ce TP. 

 
2. Objectifs 
- Etude du courant et de la tension de circuits oscillants RLC série en fonction de la 

fréquence de l’excitation 
- Détermination de la fréquence de résonance, du coefficient de qualité et de la bande 

passante du circuit. 
 
3. Aperçu théorique 
On monte en série dans un circuit électrique une résistance R, une bobine d’inductance L 

et un condensateur de capacité C (circuit RLC série de la figure 1). Ce circuit est alimenté par 
une source de tension alternative : 

tUu cos2  

En utilisant la règle des mailles u = uR + uL + uC , on obtient l’équation différentielle 
suivante où i est l’intensité du courant et q la charge du condensateur : 

C
q

dt
diLiRu   

 
 
 
 
 
 
 
 

Figure 1 : Circuit RLC serie. 
 

u 

uC uL uR 

R L C 

 
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Sachant que 
dt
dq

i  , la résolution suivant i de cette équation différentielle donne : 

)cos(2   tIi  

R
C

L
tg

C
LR

UI 







1

et      

)1(

   avec
2

2






  

Les variations du courant efficace I et du déphasage entre le courant et la tension sont 
rapportés sur les courbes de la figure 2. On peut remarquer que la courbe I() n’est pas 
symétrique par rapport à l’axe vertical passant par 0.  

Pour 
LC
1

0   appelée pulsation de résonance se produit le phénomène de 

résonance. On observe les caractéristiques suivantes : 
- la courbe I() présente un maximum d’amplitude égal à U/R 
- le déphasage  est nul 
- les termes L0 et 1/C0 sont égaux et sont souvent grands devant R 
- l’impédance du circuit se réduit à la résistance : Z = R 
- l’intensité peut être grande si la résistance du circuit est petite car I = U/R 
- les tensions efficaces UL aux bornes de la bobine et UC aux bornes du condensateur 

peuvent dépasser de beaucoup la tension U aux bornes du générateur 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 : Intensité I du courant et déphasage  en fonction de la fréquence 
 

0
0 et      




C
IUILU CL   

RCR
L

QQUUU CL

0

0 1   avec   où   d'



  

Q représente le coefficient de surtension à la résonance et est appelé facteur de qualité. Il 
peut atteindre des valeurs élevées et entraîner des tensions dangereuses (Il y a danger 
d’électrocution pour l’imprudent et de claquage des isolants. La résonance est à éviter 
lorsqu’elle expose à de tels risques). 

Le phénomène de résonance est un phénomène général observé notamment en mécanique 
et en acoustique. Il intervient chaque fois que la fréquence de l’excitateur, fournissant 
l’énergie, coïncide  avec celle de l’oscillateur ou résonateur la recevant. Ses conséquences 
néfastes, allant de la rupture d’une pièce dans un ensemble mécanique  au défaut de fidélité 

0 

I() 

 

U/R 

 

 

-/2 

/2 

0 
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d’un haut parleur, peuvent être évitées par l’amortissement des oscillations (rôle joué par la 
résistance R du circuit RLC). 

Afin de chiffrer l’acuité de la résonance (lorsque la courbe  de résonance est aiguë) on 
définit une bande passante de largeur B = 2 - 1 telle que 1 et 2 se situent de part et 
d’autre de 0 et correspondent à : 

2

)(
)()( 0

21




I
II   

On appelle fréquences de coupure les fréquences f1 et f2 correspondants aux pulsations 1 
et 2 : 







2
et      

2
2

2
1

1  ff  

4. Manipulation 
4.1. Matériel utilisé 

- 1 bobine de 20 000 spires ayant pour inductance L = 8,7 mH et résistance rL = 
20 k 

- 1 Condensateur variable par décades. 
- 1 Résistance variable par décades. 
- 1 Générateur de fonctions. 
- 1 Compteur numérique à 4 décades. 
- 1 Multimètre digital. 
- 1 Oscilloscope. 

4.2. Exercice préliminaire 
En utilisant le circuit de la figure 1 avec R = 9 k, L = 8,7 mH et C = 0,5 nF 

déterminer en ce référant à la partie théorique : 
- La fréquence de résonance f0. 
- Le coefficient de qualité Q. 
- Les fréquences de coupures f1 et f2. 
- La bande passante B. 
- Vérifier numériquement la relation Q = 

f

0 
4.3. Mode opératoire préliminaire 
Régler le générateur de fonction de la manière suivante et on garde ce réglage durant 

toute la séance : 
- Brancher le multimètre digital aux bornes de sortie du générateur. Placer ce 

multimètre en mode mesure de tension continue (DC Voltage). 
- Mettre sous tension le générateur fonctionnant en régime sinusoïdal. 
- Régler le bouton DC-offset du générateur tel que le multimètre indique 0 volt. 
- A l’aide du multimètre mis en mode mesure de tension alternative, régler le générateur 

à 3V. 
4.4. Intensité du courant en fonction de la fréquence 
Réaliser le montage de la figure 3. Régler la résistance variable à R = 9 k et le 

condensateur variable par décade à C = 0,9 nF. 
En faisant varier de façon continue la fréquence f du générateur, observer la variation 

de l’intensité i du courant parcourant le circuit. Etablir une analyse de la valeur de i à la 
résonance. Déterminer la fréquence de résonance f0.  

Dresser un tableau de mesures en multipliants les points autour de la résonance et 
tracer la courbe i = f(f). Déduire les fréquences de coupures f1 et f2 et la bande passante B. 
Comparer aux valeurs théoriques et conclure. 

Que se passe t-il si on varie R. Conclure. 
 

0,5 nF.

f2 B//
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        A : Ampèremètre  
        CM : Compteur digital 
         : Générateur de fonction 
 

 
 

Figure 3 
 
 
 

4.5. Déphasage de l’intensité du courant par rapport à la tension d’alimentation 
Réaliser le montage de la figure 4 en gardant les mêmes réglages que précédemment. 
En faisant varier de façon continue la fréquence f du générateur, observer la variation 

du déphasage  entre la tension u aux bornes du circuit et l’intensité i. Etablir une conclusion 
surtout à la résonance. 

 
 
 
 
 
 
 
 
 
 
        CM : Compteur digital 

Figure 4 
 

4.6. Tension aux bornes du circuit en fonction de la fréquence 
Débrancher l’oscilloscope du montage précédent et brancher le multimètre 

fonctionnant en mode voltmètre aux bornes du générateur. En faisant varier de façon continue 
la fréquence f du générateur, observer la variation de la tension u aux bornes du circuit. 
Etablir une conclusion surtout à la résonance.  

Que se passe t-il si on varie R. Conclure. 
4.7. Facteur de qualité 
Régler le générateur de fonction à la fréquence de résonance f0. A l’aide du multimètre 

mesurer les tensions efficaces U aux bornes du générateur, UL aux bornes de la bobine et UC 
aux bornes du condensateur. Déduire le facteur de qualité et comparer à la valeur théorique 
(tenir de la résistance interne du générateur). 
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 CM 
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Travaux pratiques de vibrations et ondes 
             TP N°6 : Analyse de Fourier 

 
1. But du TP 

Le but de la manipulation consiste à montrer qu’une vibration périodique non sinusoïdale 
représentée par une tension électrique se décompose en une somme de vibrations sinusoïdales. 

2. Rappels théoriques 
2.1. Principe 

 Soit f(t) une fonction de période T. Si elle vérifie certaines conditions mathématiques 
(pratiquement toujours réalisées en physique), on peut la développer en série de fonctions 
trigonométriques appelée série de Fourier. On peut écrire f(t) sous la forme : 







1

00
0 )sincos(

2
)(

n

nn tnbtna
a

tf   

 
 2

2

0
2

2

0
2

2

0 sin)(2  ;  cos)(2  ;  )(2
T

Tn

T

Tn

T

T dttntf
T

bdttntf
T

adttf
T

a   

 Si f(t) a une parité déterminée, le développement ci-dessus est particulièrement 
commode, car : bn = 0 si f(t) est paire et an = 0 si f(t) est impaire. De plus, si f(t) est réelle, les 
coefficients an et bn sont réels. 

2.2. Décomposition d’un signal carré 

 f(t) = -U pour 
2
T    t  < 0 

 f(t) = U pour  0   t   
2
T  

 f(t) impaire   an = a0 = 0 

 On trouve 
)12(

4
12 
 p

Ub p  

 On déduit la composition du signal : 

 tUtUtUtf 000 5sin
5
43sin

3
4sin4)( 








 

 Le spectre du signal est composé 
uniquement d’harmoniques impaires. Pour 
toutes ces harmoniques, la phase initiale et 
leur amplitudes décroissent en proportion 
inverse de leur ordre. Le spectre du signal 
a donc la forme ci-contre. 

 
 
 
 
 
 
 
 
 
 
 

bn 


U4  

3
4U  

5
4U  

7
4U  

0 30 50 70 90 
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U 

)(tf  

t 

-U 

4
T  

4
T  

2.3. Décomposition d’un signal triangulaire 

 t
T
Utf 4)(   pour 

4
T   t < 

4
T  

 )
2

(4)( tT
T
Utf   pour 

4
T   t < 

4
3T  

 )(tf est impaire   an = a0 = 0 

 
22)12(

)1(8






p

U
b

p

n  avec  ,2,1,0p  

 La fonction se décompose de la façon suivante : 

)5sin
25
13sin

9
1(sin8)( 0002

 tttUtf 


 

 
 Le spectre du signal est composé 
d’harmoniques impaires dont les amplitudes 
décroissent en proportion inverse des carrés de 
leur ordre et dont les phases sont soit nulles soit 
égales à signe alterné. Ce spectre peut être 
représenté de la façon ci-contre 

2.4. Analyse pratique des signaux 
 Pour procéder à l’analyse des signaux 
électriques on peut se servir d’un circuit RLC 
série accordé à la fréquence de l’harmonique 
qu’on veut étudier. 
  
 
 
 
 
 
 
 
 
 
 

Rg symbolise résistance interne du générateur,  2 21
( )RLCZ R L

C



    

l’impédance du circuit RLC série, ue la tension du signal d’entrée (tension à la sortie 
dugénérateur) et us la tension du signal à la sortie (tension aux bornes de la résistance de 
charge Rs). 

Pour 
LC
1

0   , l’impédance du circuit RLC est réelle et prend sa valeur minimale 

égale à R, le courant traversant le circuit RLC et la tension aux bornes de Rs prennent ainsi 
leur valeur maximale. On dit que le circuit est en état de résonance. 

En état de résonance et si ue est sinusoïdale de fréquence


2

0
0 f , le coefficient de 

division de tension du circuit s’écrit : 

2
8

U  

29
8

U  

225
8

U  

249
8

U  

 
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Si ue est périodique pouvant être décomposée, le circuit va répondre seulement à la 
composante de pulsation 0. C’est à dire que la tension us aux bornes de Rs va contenir surtout 
l’harmonique de pulsation 0 qui elle n’est pas atténuée. Ainsi on peut analyser un signal 
électrique périodique en accordant le circuit RLC aux fréquences des différentes harmoniques 
composant ce signal. 

 
 
 
 
   1.    Manipulation 

3.1. Montage expérimental et caractéristiques du circuit 
 Réaliser le montage électrique ci-dessus. Brancher un oscilloscope de telle façon 
qu’on puisse observer ue sur CH1 et us sur CH2. Ce circuit satisfait aux caractéristiques 
suivantes :  

- Le circuit RLC est composé d’un condensateur variable par décade dont la capacité de 
départ est fixé à C = 110 nF et d’une bobine de 1600 spires, d’inductance L = 50 mH 
et de résistance RL = 45 Ω. La résistance du circuit RLC est ainsi R = RL 

- Résistance de charge Rs est de 22 Ω et les résistances d’entrée et de protection sont  
Rp1 = 100 Ω et Rp2 = 22 Ω 

- Vérifier par calcul que la fréquence de résonance f0 = 2147 Hz et que le coefficient de 

division de tension du circuit s

e

u

u
= 0.0467 

 
3.2. Analyse d’une tension carrée 

- Choisir la gamme de fréquence du générateur de 1 à 10kHz, la tension de sortie aussi 
grande que possible et la forme d’onde sinusoïdale. 
- Ajuster C à 110 nF 
- Accorder le générateur à la fréquence de résonance f0 (la tension us aux bornes de Rs 
doit être maximale) 
- Choisir la forme d’onde carrée, mesurer son amplitude U sur la voie CH1 de 
l’oscilloscope. 
- Observer la forme du signal de sortie. Expliquer. Mesurer son amplitude Us. 
- Déduire l’amplitude de l’harmonique d’entrée Ue en utilisant la valeur du coefficient 
de division de tension du circuit. 
- Calculer la valeur théorique donnée par le développement de Fourier. Comparer. 
- En variant C, accorder le circuit aux fréquences des harmoniques consécutives 3f0 puis 
5f0. En effet, pour faire varier la fréquence de résonance du circuit n fois il suffit de varier 
la capacité C du condensateur 1/n2 fois. Par exemple, si C = 110 nF la fréquence est f0, 
alors C = 110/9 nF = 12,2 nF correspond à une fréquence de 3f0. 
- Refaire les étapes 5 à 7 de ce présent paragraphe pour chacune des 2 fréquences. 
- Représenter les résultats sous forme de tableaux et tirer les conclusions. 

 
3.3. Analyse d’une tension triangulaire 

 Refaire l’étude précédente pour une forme triangulaire du signal délivré par le 
générateur. 
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