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Abstract
The purpose of this paper is to treat the prediction
problems where a number of observations are missing
to the quarter-plane past of a stationary random field.
Our aim is to quantify the influence of missing val-
ues on the prediction by giving the simple bounds for

the prediction error variance. These bounds allow to
characterize the random fields for which the missing
observations do not affect the prediction. Simulation
experiments and an application to real data are presen-
ted.
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1 Introduction12

The problem of linear prediction of stationary processes requires knowledge of the observed past and13

their covariance function. When the data is coming from physical and natural sciences it is common14

to have irregularities, missing or outlying observations. The problem of spatial prediction based on15

incomplete past was considered by Kohli and Pourahmadi [4] to provide estimates for the missing values16

as well as the predictors. The original impetus for their work came from the interpolation results in17

[1] and prediction based on incomplete past in [2] for a second order stationary time series. The key18

idea in both these methods is the appropriate orthogonalization of the "past" and "future" of the time19

series, where past corresponds to the infinite past of the first missing value and future to all the values20

observed between missing values and the time point at which we need to predict.21

In this paper, we investigate the problem of linear prediction of stationary random fields with non-22

symmetrical half-plane past. Our main contribution lies in finding an explicit formula of the mean23

square convergent autoregressive series representation for all (h1, h2)-step ahead linear predictors,24

(h1, h2) ≥ (0, 0). In order to calculate explicitly the prediction coefficients of our new expression25

Prelimanries26

Let H be a Hilbert space (e.g, H = L2(Ω, F, P )) the space of all random variables on (Ω, F, P ) with
finite second order moments and zero mean, endowed by the inner product < X,Y >= E(XY ) with norm
‖X‖ =

√
EX2. Let {X(s, t), (s, t) ∈ Z2} on (Ω, F, P ) a random field. We assume that E(X(s, t)) = 0,

(s, t) ∈ Z2, {X(s, t), (s, t) ∈ Z2} is said to be a second order random field if E|X(s, t)|2 <∞, (s, t) ∈ Z2.

That is, X(s, t) ∈ H, moreover, if for all integers s1, s2, t1 and t2, the covariance of the X(s1, t1) and
X(s2, t2) depends on the lags (s1 − s2, t1 − t2), namely,

cov(X(s1, t1), X(s2, t2)) = γ(s1 − s2, t1 − t2)

then27

{X(s, t), (s, t) ∈ Z2} is called a second order stationary random field.28

γ(. , .) is a positive-definite function on the group of lattice points Z2, by the Bochner’s theorem.29
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2 Impact of missing data

Unlike the 1-D case, there is no natural order definition in the 2-D domain. However, the totally ordered30

NSHP support is a favorable type of support in the sense that it yields a natural extension to the 1-D31

results.32

I Definition 1. We call a nonsymmetrical half-plan past (NSHP) any subset S of Z2 satisfying33

1. S stable under addition34

2. S ∪ −S = Z2
35

3. S ∩ −S = {(0, 0)}.36

For a purely nondeterministic stationary (PND) random field X(s, t) (the case when V (s, t) = 0, i.e37

X(s, t) ∈ sp{ε(s, t), (s, t) ∈ S} ). X(s, t) have a mean square convergent infinite moving averageMA(∞)38

representation [4]39

X(s, t) =
+∞∑
k=0

+∞∑
l=0

bklε(s− k, t− l), (1)40

the sequence {bk, l, (k, l) ∈ Z2} is called the MA(∞) parameters.41

2 Main result:Autoregressive representation of the Multi-step ahead linear42

predictor43

The multi-step ahead prediction problem of stationary random fields has been studied by .... when the44

third quadrant is used as the past. We extends their pioneer work to random fields with nonsymmetrical45

half-plane past. Let {X(s, t); (s, t) ∈ Z2} is a PND stationary random field. The procedure for solving46

the (h1, h2)−step ahead linear prediction problem with respect to the total order and nonsymmerical47

half-plane (NSHP) support defined by (8) involves the construction of predictor of future values as a48

linear combination of {X(k, l), (k, l) ∈ S} which are close to X(s+ h1, t+ h2), (h1, h2) ≥ (0, 0) in the49

sense of mean squared error. The representation (1) is inverted to give50

ε(s, t) =
+∞∑
k=0

+∞∑
l=0

ak, lX(s− k, t− l). (2)51

The representation (2) converges in mean square [3] . The collection of all finite linear combinations52

of elements in the space and its closure are also included in the space. At first we fix our attention on53

the problem of finding convergent representation for the one-step ahead linear predictor PHSX(s, t), i.e54

the minimum norm linear causal and continuous support predictor of X(s, t). We show that when (8)55

converges, such a representation exists.56

I Theorem 2. Let {X(T ); T ∈ Z2} be a PND stationary random field. The one step ahead linear57

predictor PHSX(s, t) of X(s, t) possesses a convergent serie representation given by58

PHSX(s, t) = −
+∞∑
k=0

+∞∑
l=0

(k, l)6=(0, 0)

ak, lX(s− k, t− l), (3)59

if and only if ε(s, t) has the convergent representation series.60

Proof. We have (6) implies that

E(ε(s, t)X(s, t)) = E(ε(s, t))2.

From (1) we deduce that
E(ε(s, t))2 = a00E(ε(s, t)X(s, t)),

and necessarily a00 = 1. Thus, (2) may be rewritten as61

X(s, t) = ε(s, t)−
+∞∑
k=0

+∞∑
l=0

(k, l)6=(0, 0)

ak, lX(s− k, t− l).62

J63



A. Hamaz et al 3

Now, we are interested in Predicting future values other than X(s, t) which is greatly important in64

the theory and applications of stationary random fields. The next lemma is useful for computing the65

predictor.66

I Lemma 3. Let {X(T ); T ∈ Z2} be a PND stationary random field, the MA and the AR parameters67

are {bk, l, (k, l) ∈ Z2} and {ak, l, (k, l) ∈ Z2}, respectively, then the following equation is satisfied for all68

(k, l) ≥ (0, 1)69

k∑
i=0

l∑
j=0

aijbk−i, l−j = 0. (4)70

Proof. By substituting (2) we obtain for all (k, l) ≥ (0, 1)71

0 = E(ε(s− k, t− l)ε(s, t)) = E(ε(s− k, t− l)
+∞∑
i=0

+∞∑
j=0

aijX(s− i, t− j))72

= E(ε(s− k, t− l)
k∑

i=0

l∑
j=0

aijX(s− i, t− j))73

=
k∑

i=0

l∑
j=0

aijE(ε(s− k, t− l)X(s− i, t− j))74

=
k∑

i=0

l∑
j=0

aijbk−i, l−jE(ε(s− k, t− l))2.75

76

J77

I Corollary 4 (O. Arezki at al, [1]). Let {X(T ); T ∈ Z2} be a PND stationary random field, the MA78

and the AR parameters are {bk, l, (k, l) ∈ Z2} and {ak, l, (k, l) ∈ Z2}, respectively, then the following79

equation is satisfied for all (k, l) ≥ (0, 1)80

k∑
i=0

l∑
j=0

aijbk−i, l−j = 0. (5)81

I Theorem 5. Let {X(T ); T ∈ Z2} be a PND stationary random field. The one step ahead linear82

predictor PHSX(s, t) of X(s, t) possesses a convergent serie representation given by83

PHSX(s, t) = −
+∞∑
k=0

+∞∑
l=0

(k, l)6=(0, 0)

ak, lX(s− k, t− l), (6)84

if and only if ε(s, t) has the series representation (2).85

Proof. By using Lemma 3, the equation (1) implies that

E(ε(s, t)X(s, t)) = E(ε(s, t))2.

From (2) we deduce that
E(ε(s, t))2 = a00E(ε(s, t)X(s, t)),

and necessarily a00 = 1. Thus, (2) may be rewritten as86

X(s, t) = ε(s, t)−
+∞∑
k=0

+∞∑
l=0

(k, l)6=(0, 0)

ak, lX(s− k, t− l).87

Since ε(s, t) is uncorrelated with X(u, v), (u, v) < (s, t), we deduce that the one-step predictor of88

X(s, t) is given by89

PHSX(s, t) = −
+∞∑
k=0

+∞∑
l=0

(k, l)6=(0, 0)

ak, lX(s− k, t− l). (7)90

91
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4 Impact of missing data

I Proposition 6. This is a proposition92

The existence of the convergent representation (6) for the one step predictorgiven in Proposition 6 is
assured by the convergence of (2). Conversely, if the one-step predictor PHS

s, t
X(s, t) has the mean

square representation (6), then the one-step prediction error satisfies

ε(s, t) = X(s, t)− PHSX(s, t) =
+∞∑
k=0

+∞∑
l=0

ak, lX(s− k, t− l),

with a0, 0 = 1 and the sum convergent in mean square. Thus, we have shown that a necessary and93

sufficient condition for the existence of (6) as a mean square limit is the existence and the convergence94

of (2). J95

I Remark 7. Theorem 5 implies that.96

3 Example and Simulation study97

Consider the stationary first order multiplicative spatial autoregressive model (MSAR(1)) defined by98

X(s, t) = aX(s− 1, t) + bX(s, t− 1)− a.bX(s− 1, t− 1) + ε(s, t) (8)99

where {ε(s, t); (s, t) ∈ Z2} are independent random variables with E (ε(s, t)) = 0, Var(ε(s, t)) = σ2,100

|a| < 1 and |b| < 1.101

By using the recursions given by (??) and the fact that a10 = a, a10 = b, a11 = −a.b and aij = 0 if (i, j) /∈102

{(1, 0), (0, 1), (1, 1)}, it can be shown that the MA representation of the MSAR(1) model is103

bk,l =
{
akbl, if k ≥ 0, l ≥ 0
0 if k < 0 or l < 0. (9)104

In the same way, the best linear predictor of X(0, 0) based on future observations is

X̂h1,h2(0, 0) = 1
a.b

(aX(0, 1) + bX(1, 0)−X(1, 1)) ,

and then the suboptimal predictor is105

X̃(0, 0) = αX̂(0, 0) + βX̂h1,h2(0, 0). (10)106

The best linear interpolator of X(0, 0) by performing the extension of the prediction.107

Their interpolation is a linear combination of 8 data points in the nearest neighborhood to the prediction108

point:109

X̃(0, 0) = 1
1 + a2 + b2 + a2b2

{(
a− ab2) (X(−1, 0) +X(1, 0) +

(
b+ a2b

)
(11)110

The values of a and b that satisfy (9) are obtained by numerical approximation using software R.111

Listing 1 R code.
112

library ( rootSolve )113

fun <- function (x,y) 1/((1 -x^2)*(1 -y^2)) -114

((1 -(1 -((1 -x^2)*(1 -y^2)*(x^2+y^2-x^2*y ^2)))^2)/115

(1+(1 -(1 -x^2)*(1 -y^2)*(x^2+y^2+x^2*y ^2))^2))*116

(2/((1 -x^2)*(1 -y^2)*(x^2+y^2-x^2*y^2)) - 1/(x^2+y^2+x^2*y^2))117

118

for (x in seq (0.05 , 0.95 , by = 0.05)){119

myfun <- function (y) fun(x,y)120

Eq <- uniroot .all(myfun ,c( -1 ,1))121

print(paste(x,Eq), sep=’ ; ’)122

}123124
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3.1 Simulation study125

To demonstrate the validity of Theorem 5, we present here a simulation study carried out using the126

statistical software R 3.5.4. The steps involved in the computation of the estimates for the linear127

predictors are summarized in Algorithm 1.128

Algorithm 1 Prediction Algorithm

for a ∈ seq(0.05, 0.95, by = 0.05) do
Set the values b using the program below.
for (n,m) ∈ {(100, 150), (150, 200), (250, 250)} do

for j ∈ {1 : rep = 1000} do
• Generate a data as a n×m rectangular grid from a spatial models of the form (8)

where {ε(s, t)} is Gaussian white noise process with mean 0 and variance σ2 = 1.
• Perform an indices change to locate X(0, 0) inside the n×m grid.
• Calculate the value of the optimal linear predictor X̃(0, 0) by using (??) and calculate

ν
(1)
j =

(
X(0, 0)− X̃(0, 0)

)2.
• Calculate the value of the suboptimal linear predictor X̃(0, 0) by using (10)

where α and β are given by(11) and caluclate ν(2)
j =

(
X(0, 0)− X̃(0, 0)

)2.

• Calculate the estimate of the prediction error variance (PEV) of X̃(0, 0) by ν1 = 1
rep

rep∑
j=1

ν
(1)
j

and the estimate of PVE of X̃(0, 0) by ν2 = 1
rep

rep∑
j=1

ν
(2)
j .

129

Not surprisingly, the predictions obtained based on {X(s, t); 1 ≤ s ≤ 144, 1 ≤ t ≤ 161}, after130

estimating the missing data, improve the quality of the prediction. The impact of these missing values131

depends on the horizons of the predictions. In fact, given the results in Table 3, it is clear that the132

impact of missing data increases as prediction steps h1 and h2 increase. Also, the examination of the133

results in Table 3 reveals a certain symmetry in the values of the impact considered. Indeed, the values134

of the impact for the horizons (h1, h2) and (h2, h1) are very close.135

Figure 1 Error prediction

TGDK



6 Impact of missing data

(n,m)=(100,150) (n,m)=(150,200) (n,m)=(250,250)

a b ν1 ν2 ν1 ν2 ν1 ν2

0.05 0.557 0.652 0.650 0.647 0.644 0.641 0.639
0.10 0.569 0.691 0.687 0.638 0.640 0.631 0.627
0.15 0.582 0.697 0.692 0.621 0.622 0.615 0.611
0.20 0.594 0.701 0.698 0.620 0.616 0.608 0.602
0.25 0.603 0.709 0.707 0.621 0.619 0.609 0.613
0.30 0.608 0.661 0.669 0.592 0.582 0.581 0.576
0.35 0.607 0.603 0.609 0.607 0.598 0.594 0.591
0.40 0.601 0.599 0.603 0.589 0.596 0.576 0.573
0.45 0.587 0.579 0.588 0.580 0.573 0.567 0.561
0.50 0.562 00567 0.571 0.559 0.562 0.546 0.549
0.55 0.516 0.553 0.560 0.601 0.609 0.556 0.559
0.60 0.406 0.542 0.549 0.536 0.540 0.531 0.532

Table 1 Prediction error variance for several values of a and b.

4 Conclusion136

he purpose of this paper is to treat the prediction problems where a number of observations are missing137

to the quarter-plane past of a stationary random field. Our aim is to quantify the influence of missing138

values on the prediction by giving the simple bounds for the prediction error variance. These bounds139

allow to characterize the random fields for which the missing observations do not affect the prediction.140

Simulation experiments and an application to real data are presented.141
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